Skip to main content
Log in

Ultra-Shallow Chemical Characterization of Organic Thin Films Deposited by Plasma and Vacuum-Ultraviolet, Using Angle- and Excitation Energy-Resolved XPS

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Nitrogen (N)-rich organic thin films were deposited using both low-pressure plasma- and vacuum-ultraviolet-based techniques, from mixtures of ammonia (NH3) and ethylene (C2H4). These films were investigated using angle-resolved and excitation energy resolved X-ray photoelectron spectroscopy (ARXPS and ERXPS, respectively) in order to determine their sub-surface chemical profiles. These two techniques enable one to tune the “XPS 95%” information depth, z 95%, by varying either the angle or the excitation energy. Using a combination of both techniques, z 95% can be varied continuously from 0.7 to 11 nm. The surface-near chemistry is investigated using both high-resolution C 1s spectra and elemental concentrations derived from elemental peak intensities. Results show that while laboratory XPS, and even ARXPS, suggest homogenous surface chemistries, the novel combination of ARXPS and ERXPS points to the existence of a compositional profile in the extreme outer surface layer. Our conclusions are supported by simulations using SESSA software.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Foerch R, Chifen AN, Bousquet A, Khor HL, Jungblut M, Chu L-Q, Zhang Z, Osey-Mensah I, Sinner E-K, Knoll W (2007) Chem Vap Depos 13:280–294

    Article  Google Scholar 

  2. Siow KS, Britcher L, Kumar S, Griesser HJ (2006) Plasma Processes Polym 3:392–418

    Article  Google Scholar 

  3. Girard-Lauriault PL, Mwale F, Iordanova M, Demers C, Desjardins P, Wertheimer MR (2005) Plasma Processes Polym 2:263–270

    Article  Google Scholar 

  4. Favia P, d’Agostino R (1998) Surf Coat Technol 98:1102–1106

    Article  Google Scholar 

  5. Brady RF Jr (2004) Comprehensive desk reference of polymer characterization and analysis. Oxford University Press, UK

    Google Scholar 

  6. Powell CJ, Jablonski A (2000) Surf Interface Anal 29:108–114

    Article  Google Scholar 

  7. Paynter RW (1999) Surf Interface Anal 27:103–113

    Article  Google Scholar 

  8. Butoi CI, Mackie NM, Gamble LJ, Castner DG, Barnd J, Miller AM, Fisher ER (2000) Chem Mater 12:2014–2024

    Article  Google Scholar 

  9. Parry KL, Shard AG, Short RD, White RG, Whittle JD, Wright A (2006) Surf Interface Anal 38:1497–1504

    Article  Google Scholar 

  10. Tsai YM, Boerio FJ (1998) J Appl Polym Sci 70:1283–1298

    Article  Google Scholar 

  11. Foerch R, Beamson G, Briggs D (1991) Surf Interface Anal 17:842–846

    Article  Google Scholar 

  12. Shi MK, Martinu L, Sacher E, Selmani A, Wertheimer MR, Yelon A (1995) Surf Interface Anal 23:99–104

    Article  Google Scholar 

  13. Haïdopoulos M, Horgnies M, Mirabella F, Pireaux JJ (2008) Plasma Processes Polym 5:67–75

    Article  Google Scholar 

  14. Paynter RW (2004) J Electron Spectrosc Relat Phenom 135:183–190

    Article  Google Scholar 

  15. Paynter RW (2002) Surf Interface Anal 33:14–22

    Article  Google Scholar 

  16. Tremblay MC, Paynter RW (2003) Surf Interface Anal 35:502–514

    Article  Google Scholar 

  17. Merzlikin SV, Tolkachev NN, Strunskus T, Witte G, Glogowski T, Wöll C, Grünert W (2008) Surf Sci 602:755–767

    Article  ADS  Google Scholar 

  18. Esaka F, Furuya K, Shimada H, Imamura M, Matsubayashi N, Sato T, Nishijima A, Kikuchi T, Kawana A, Ichimura H (1997) Surf Sci 377:197–200

    Article  ADS  Google Scholar 

  19. Shimada H, Matsubayashi N, Imamura M, Sato T, Nishijima A (1996) Appl Surf Sci 101:56–59

    Article  ADS  Google Scholar 

  20. Shimada H, Sato K, Matsubayashi N, Imamura M, Saito T, Furuya K (1999) Appl Surf Sci 144(45):21–25

    Article  ADS  Google Scholar 

  21. Zier M, Oswald S, Reiche R, Wetzig K (2006) Microchim Acta 156:99–101

    Article  Google Scholar 

  22. Pavluch J, Zommer L, Masek K, Skala T, Sutara F, Nehasil V, Pis I, Polyak Y (2010) Anal Sci 26:209–215

    Article  Google Scholar 

  23. Girard-Lauriault PL, Retzko I, Swaraj S, Matsubayashi N, Gross T, Mix R, Unger WES (2010) Plasma Processes Polym 7:474–481

    Article  Google Scholar 

  24. Truica-Marasescu F, Wertheimer MR (2008) Plasma Processes Polym 5:44–57

    Article  Google Scholar 

  25. Truica-Marasescu F, Wertheimer MR (2008) Macromol Chem Phys 209:1043–1049

    Article  Google Scholar 

  26. Dietrich P, Horlacher H, Girard-Lauriault P-L, Gross T, Lippitz A, Min H, Wirth T, Castelli R, Seeberger PH, Unger WES (2011) Langmuir 27:4808–4815

    Article  Google Scholar 

  27. Wang H, Chen SF, Li LY, Jiang SY (2005) Langmuir 21:2633–2636

    Article  Google Scholar 

  28. Min H, Park JW, Shon HK, Moon DW, Lee TG (2008) Appl Surf Sci 255:1025–1028

    Article  ADS  Google Scholar 

  29. Truica-Marasescu F, Wertheimer MR (2004) J Appl Polym Sci 91:3886–3898

    Article  Google Scholar 

  30. Truica-Marasescu F-E, Wertheimer MR (2005) Macromol Chem Phys 206:744–757

    Article  Google Scholar 

  31. Cumpson PJ (1995) J Electron Spectrosc Relat Phenom 73:25–52

    Article  Google Scholar 

  32. Beamson G, Briggs H (1992) High resolution XPS of organic polymers: the Scienta ESCA 300 database. Wiley, Chichester

    Google Scholar 

  33. Smekal W, Werner WSM, Powell CJ (2005) Surf Interface Anal 37:1059–1067

    Article  Google Scholar 

  34. Tanuma S, Powell CJ, Penn DR (1994) Surf Interface Anal 21:165–176

    Article  Google Scholar 

  35. Yeh JJ, Lindau I (1985) Atom Data Nucl Data Tables 32:1–155

    Article  ADS  Google Scholar 

  36. Tanuma S, Powell CJ, Penn DR (1991) Surf Interface Anal 17:927–939

    Article  Google Scholar 

  37. Seah MP, Spencer SJ, Bensebaa F, Vickridge I, Danzebrink H, Krumrey M, Gross T, Oesterle W, Wendler E, Rheinlander B, Azuma Y, Kojima I, Suzuki N, Suzuki M, Tanuma S, Moon DW, Lee HJ, Cho HM, Chen HY, Wee ATS, Osipowicz T, Pan JS, Jordaan WA, Hauert R, Klotz U, van der Marel C, Verheijen M, Tarnminga Y, Jeynes C, Bailey P, Biswas S, Falke U, Nguyen NV, Chandler-Horowitz D, Ehrstein JR, Muller D, Dura JA (2004) Surf Interface Anal 36:1269–1303

    Article  Google Scholar 

  38. Seah MP, Spencer SJ (2002) Surf Interface Anal 33:640–652

    Article  Google Scholar 

  39. Truica-Marasescu F, Girard-Lauriault P-L, Lippitz A, Unger WES, Wertheimer MR (2008) Thin Solid Films 516:7406–7417

    Article  ADS  Google Scholar 

  40. Girard-Lauriault PL, Truica-Marasescu F, Petit A, Wang HT, Desjardins P, Antoniou J, Mwale F, Wertheimer MR (2009) Macromol Biosci 9:911–921

    Article  Google Scholar 

  41. Ruiz JC, Girard-Lauriault PL, Truica-Marasescu F, Wertheimer MR (2010) Radiat Phys chem 79:310–314

    Article  ADS  Google Scholar 

  42. Sarra-Bournet C, Gherardi N, Glenat H, Laroche G, Massines F (2010) Plasma Chem Plasma Process 30:213–239

    Article  Google Scholar 

  43. Girard-Lauriault P-L, Desjardins P, Unger WES, Lippitz A, Wertheimer MR (2008) Plasma Processes Polym 5:631–644

    Article  Google Scholar 

  44. Gengenbach TR, Griesser HJ (1999) J Polym Sci Part A: Polym Chem 37:2191–2206

    Article  ADS  Google Scholar 

  45. Ruiz JC, St-Georges-Robillard A, Theresy C, Lerouge S, Wertheimer MR (2010) Plasma Processes Polym 7:737–753

    Article  Google Scholar 

  46. Gross T, Pippig F, Merz B, Merz R, Vohrer U, Mix R, Steffen H, Bremser W, Unger WES (2010) Plasma Processes Polym 7:494–503

    Article  Google Scholar 

Download references

Acknowledgments

P.-L. Girard-Lauriault is grateful to the Adolf Martens Fellowship Program of BAM and to the Fonds Québécois de la Recherche sur la Nature et les Technologies (FQRNT) for post-doctoral fellowship support. The authors would like to thank P. Dietrich (BAM) for his help in the preparation of samples. We also acknowledge support from the BESSY II synchrotron radiation facility and its team, as well as A. Lippitz (BAM) and. A. Nefedov (Karlsruhe Institute of Technology, KIT) from the HE-SGM CRG at BESSY.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang E. S. Unger.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 289 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Girard-Lauriault, PL., Ruiz, JC., Gross, T. et al. Ultra-Shallow Chemical Characterization of Organic Thin Films Deposited by Plasma and Vacuum-Ultraviolet, Using Angle- and Excitation Energy-Resolved XPS. Plasma Chem Plasma Process 31, 535–550 (2011). https://doi.org/10.1007/s11090-011-9306-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-011-9306-3

Keywords

Navigation