Skip to main content
Log in

Principal Limitations in Homogeneous Gas Phase Chemistry in Non-Thermal Plasmas

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

This study highlights the oxidation of H2, CH4, and HCl present in the range of some volume percent in a homogeneous O2 or air phase in a flow through glass barrier discharge reactor. The oxidation of all three compounds is highly exothermic and exergonic at ambient temperature and proceeds at sufficiently high temperatures as radical chain reaction. The conversion of each compound was below 10% in a non-thermal oxygen plasma under various reaction conditions. Increasing concentrations of H2 and CH4 above the lower explosion limit did not lead to higher conversion degrees. It is assumed that only initial radical formation by electron impact dissociation and exothermic steps within the chain process run in a sufficiently fast manner at ambient temperature. For endothermic steps within the radical chain, the necessary activation energy is not available and the chain reaction aborts, most likely, after formation of peroxyl (hydro- or methyl-peroxyl) radicals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Morent R, De Geyter N, Verschuren J, De Clerck K, Kiekens P, Leys C (2008) Surf Coat Tech 202:3427

    Article  Google Scholar 

  2. Moreau E (2007) J Phys D Appl Phys 40:605

    Article  ADS  Google Scholar 

  3. Van Durme J, Dewulf J, Leys C, Van Langenhove H (2008) Appl Catal B Environ 78:324

    Article  Google Scholar 

  4. Chen HL, Lee HM, Chen SH (2008) Appl Catal B Environ 85:1

    Article  Google Scholar 

  5. Rosocha LA, Kim Y, Anderson GK, Abbate S (2007) Plasma Env Sci Techn 1:8

    Google Scholar 

  6. Bozhenkov SA, Starikovskaia SM, Starikovskii AY (2003) Combust Flame 133:133

    Article  Google Scholar 

  7. Kambara S, Kuriyama R, Osakabe T, Yukimura K (2008) Int J Hydrogen Energ 33:6792

    Article  Google Scholar 

  8. Mfopara A, Kirkpatrick MJ, Odic E (2009) Plasma Chem Plasma P 29:91

    Article  Google Scholar 

  9. Pringle KJ, Whitehead JC, Wilman JJ, Wu J (2004) Plasma Chem Plasma P 24:421

    Article  Google Scholar 

  10. van Drumpt JD (1972) Ind Eng Chem Fundam 22:594

    Article  Google Scholar 

  11. Cooper WW, Mickley HS, Baddour RF (1968) Ind Eng Chem Fundam 7:400

    Article  Google Scholar 

  12. Seery DJ, Britton D (1964) J Phys Chem 68:2263

    Article  Google Scholar 

  13. Pitchford LC, ONeil SV, Rumble JR (1981) Phys Rev A 23:294

    Article  ADS  Google Scholar 

  14. Kobayashi S, Japanese Patent, 59-73405 (1984) Mitsui Toatsu Chem Inc

  15. Kosarev IN, Aleksandrov NL, Kindysheva SK, Starikovskaia SM, Starikovskii AY (2008) Combust Flame 154:569

    Article  Google Scholar 

  16. Aghalayam P, Bui P-A, Vlachos G (1998) Combust Theory Modell 2:515

    Article  MATH  ADS  Google Scholar 

Download references

Acknowledgments

The authors thank Mrs. S. Woszidlo for taking care of the routine analysis and Dr. R. Weber from Bayer Material Science AG for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Holzer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holzer, F., Köhler, R., Roland, U. et al. Principal Limitations in Homogeneous Gas Phase Chemistry in Non-Thermal Plasmas. Plasma Chem Plasma Process 31, 307–314 (2011). https://doi.org/10.1007/s11090-010-9282-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-010-9282-z

Keywords

Navigation