Skip to main content
Log in

Towards a Consistent Chemical Kinetic Model of Electron Beam Irradiation of Humid Air

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

A chemical kinetic model has been assembled based upon previous literature to assist in developing a better understanding of the mechanism behind the electron beam irradiation of humid air. Thermodynamic determination of the feasibility of particular product sets was used to eliminate certain reactions proposed previously, dynamical models were used to guide the choice of product sets, and updated rate constants were obtained from the current literature. Tracers were also used to determine significant sources and sinks of hydroxyl radical, an important species in the irradiation process. Modeling results for selected species have been presented for 1 atm of air at 298.15 K and 50% relative humidity, at doses of 1, 5, 10, 25, and 50 kGy delivered over 0.8 s. The concentrations of the most abundant ions, radicals, and stable reaction products have been included, as well as the calculated major sources and sinks of hydroxyl radical.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Tokunaga O, Nishimura N, Suzuki N, Washino M (1978) Radiat Phys Chem 11:117

    ADS  Google Scholar 

  2. Chmielewski AG, Ostapczuk A, Zimek Z, Licki J, Kubica K (2002) Radiat Phys Chem 63:653

    Article  ADS  Google Scholar 

  3. Ponomarev AV, Makarov IE, Saifullin NR, Syrtlanov ASh, Pikaev AK (2002) Radiat Phys Chem 65:71

    Article  ADS  Google Scholar 

  4. Mätzing H (1991) Advan Chem Phys 80:315

    Article  Google Scholar 

  5. Lowke JJ, Morrow R (1995) IEEE Trans Plasma Sci 23:661

    Article  ADS  Google Scholar 

  6. Kossyi IA, Kostinsky AY, Matveyev AA, Silakov VP (1992) Plasma Sources Sci Technol 1:207

    Article  ADS  Google Scholar 

  7. Eichwald O, Yousfi M, Hennad A, Benabdessadok MD (1997) J Appl Phys 82:4781

    Article  ADS  Google Scholar 

  8. Sieck LW, Herron JT, Green DS (2000) Plasma Chem Plasma Process 20:235

    Article  Google Scholar 

  9. Herron JT, Green DS (2001) Plasma Chem Plasma Process 21:459

    Article  Google Scholar 

  10. Doi Y, Nakanishi I, Konno Y (2000) Radiat Phys Chem 57:495

    Article  ADS  Google Scholar 

  11. Hirota K, Sakai H, Washio M, Kojima T (2004) Ind Eng Chem Res 43:1185

    Article  Google Scholar 

  12. Han D-H, Stuchinskaya T, Won Y-S, Park W-S, Lim J-K (2003) Radiat Phys Chem 67:51

    Article  ADS  Google Scholar 

  13. Hashimoto S, Hakoda T, Hirata K, Arai H (2000) Radiat Phys Chem 57:485

    Article  ADS  Google Scholar 

  14. Hirota K, Hakoda T, Arai H, Hashimoto S (2002) Radiat Phys Chem 65:415

    Article  ADS  Google Scholar 

  15. Willis C, Boyd AW (1976) Int J Radiat Phys Chem 8:71

    Article  Google Scholar 

  16. Ianni JC, Kintecus (2002) Windows version 2.80, www.kintecus.com

  17. Ianni JC (2003) In: Bathe KJ (ed) A comparison of the Bader-Deuflhard and the Cash-Karp Runge-Kutta Integrators for the GRI-MECH 3.0 Model based on the chemical kinetics code kintecus. Computational fluid and solid mechanics. Elsevier Science Ltd, Oxford, pp 1368–1372

    Google Scholar 

  18. Halbleib JA, Kensek RP, Mehlhorn TA, Valdez GD, Seltzer SM, Berger MJ (1992) ITS Version 3.0: the integrated TIGER series of coupled electron/photon monte carlo transport codes, Sandia National Laboratories Report No. SAND91-1634, Sandia National Laboratories

  19. Cleland MR, personal communication, unpublished research (2008) Based on the entrance dose

  20. Sutherland CD, Zinn J (1975) Chemistry computations for irradiated hot air, Los Alamos scientific laboratory informal rept. LA-6055-MS, Los Alamos National Laboratory, Los Alamos, New Mexico

  21. Sander SP, Friedl RR, Golden DM, Kurylo MJ, Moortgat GK, Keller-Rudek H, Wine PH, Ravishankara AR, Kolb CE, Molina MJ, Finlayson-Pitts BJ, Huie RE, Orkin VL (2006) Chemical kinetics and photochemical data for use in atmospheric studies, evaluation number 15, JPL Publ. 06–2. National Aeronautics and Space Administration, Jet Propulsion Laboratory, California Institute of Technology, Pasadena

    Google Scholar 

  22. Kircher CC, Sander SP (1984) J Phys Chem 88:2082

    Article  Google Scholar 

  23. Adams NG, Poterya V, Babcock LM (2006) Mass Spectrom Rev 25:798

    Article  Google Scholar 

  24. Smith D, Adams NG (1983) In: Brouillard F, McGowan JW (eds) Physics of ion-ion and electron-ion collisions. Plenum Press, New York

    Google Scholar 

  25. Knighton WB, Grimsrud EP (1996) In: Adams NG, Babcock LM (eds) Advances in gas phase ion chemistry. JAI Press, Greenwich, Connecticut

    Google Scholar 

  26. Davidson JA, Sadowski CM, Schiff HI, Streit GE, Howard CJ, Jennings DA, Schmeltekopf AL (1976) J Chem Phys 64:57

    Article  ADS  Google Scholar 

  27. Pieniazek PA, VandeVondele J, Jungwirth P, Krylov AI, Bradforth SE (2008) J Phys Chem A 112:6159

    Article  Google Scholar 

  28. de Visser SP, de Koning LJ, Nibbering NMM (1995) J Phys Chem 99:15444

    Article  Google Scholar 

  29. Yamaguchi S, Kudoh S, Kawai Y, Okada Y, Orii T, Takeuchi K (2003) Chem Phys Lett 377:37

    Article  ADS  Google Scholar 

  30. Howard CJ, Bierbaum VM, Rundle HW, Kaufman F (1972) J Chem Phys 57:3491

    Article  ADS  Google Scholar 

  31. Fehsenfeld FC, Mosesman M, Ferguson EE (1971) J Chem Phys 55:2115

    Article  ADS  Google Scholar 

  32. Afeefy HY, Liebman JF, Stein SE Neutral thermochemical data. In: Linstrom PJ, Mallard WG (eds) NIST Chemistry WebBook, NIST Standard Reference Database Number 69, National Institute of Standards and Technology, Gaithersburg MD, 20899, http://webbook.nist.gov

  33. Okabe H (1978) Photochemistry of small molecules. Wiley, New York

    Google Scholar 

  34. Arshadi M, Kebarle P (1970) J Phys Chem 74:1483

    Article  Google Scholar 

  35. Loew GH, Berkowitz DS, Chang S (1978) Astrophys J 219:458

    Article  ADS  Google Scholar 

  36. Gierczak T, Jiménez E, Riffault V, Burkholder JB, Ravishankara AR (2005) J Phys Chem A 109:586

    Article  Google Scholar 

  37. Liebman JF, Romm MJ, Meot-Ner M, Cybulski SM, Scheiner S (1991) J Phys Chem 95:1112

    Article  Google Scholar 

  38. Cao Y, Choi J-H, Haas B-M, Okumura M (1994) J Phys Chem 98:12176

    Article  Google Scholar 

  39. Willis C, Lossing FP, Back RA (1976) Can J Chem 54:1

    Article  Google Scholar 

  40. Sumathi R, Sengupta D, Nguyen MT (1998) J Phys Chem A 102:3175

    Article  Google Scholar 

  41. Matus MH, Arduengo AJIII, Dixon DA (2006) J Phys Chem A 110:10116

    Article  Google Scholar 

  42. H. Hu and T. S. Dibble, Unpublished quantum calculations

  43. Baer T, Hase WL (1996) Unimolecular reaction dynamics: theory and experiments. Oxford University Press, New York

    Google Scholar 

  44. Eisfeld W, Morokuma K (2003) J Chem Phys 119:4682

    Article  ADS  Google Scholar 

  45. Sennhauser ES, Armstrong DA (1978) Radiat Phys Chem 12:115

    ADS  Google Scholar 

  46. Plastridge B, Cohen MH, Cowen KA, Wood DA, Coe JV (1995) J Phys Chem 99:118

    Article  Google Scholar 

  47. Gioumousis G, Stevenson DP (1958) J Chem Phys 29:294

    Article  ADS  Google Scholar 

  48. Manion JA, Huie RE, Levin RD, Burgess DR Jr., Orkin VL, Tsang W, McGivern WS, Hudgens JW, Knyazev VD, Atkinson DB, Chai E, Tereza AM, Lin C-Y, Allison TC, Mallard WG, Westley F, Herron JT, Hampson RF, Frizzell DH, NIST chemical kinetics database, NIST standard reference database 17, Version 7.0 (Web Version), Release 1.4.3, Data version 2008.12, National institute of standards and technology, Gaithersburg, Maryland, 20899–8320. http://kinetics.nist.gov/

  49. Yang X, Zhang X, Castleman AW (1991) Internat J Mass Spectrom 109:339

    Article  Google Scholar 

  50. Hakoda T, Shimada A, Matsumoto K, Hirota K (2009) Plasma Chem Plasma Process 29:69

    Article  Google Scholar 

  51. Tokunaga O, Nishimura K, Suzuki N, Machi S, Washino M (1979) J Nuc Sci Technol 16:901

    Google Scholar 

Download references

Acknowledgments

This research was supported by grant CTS-0626302 from the National Science Foundation. The authors thank M. R. Cleland for sharing results of the ITS code, M. S. Driscoll for helpful conversations, and H. Hu for help with quantum calculations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theodore S. Dibble.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1021 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmitt, K.L., Murray, D.M. & Dibble, T.S. Towards a Consistent Chemical Kinetic Model of Electron Beam Irradiation of Humid Air. Plasma Chem Plasma Process 29, 347–362 (2009). https://doi.org/10.1007/s11090-009-9186-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-009-9186-y

Keywords

Navigation