Skip to main content
Log in

Plasma-catalytic Reactor for Decomposition of Chlorinated Hydrocarbons

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

The conversion of trichloromethane in mixtures with air was investigated under normal pressure in a gliding discharge (GD) reactor operated in both a homogeneous gas system and with a solid catalyst. The Pt catalyst supported by a honey-comb cordierite structure was placed in the reactor below the ends of the electrodes. Cl2 and HCl were the main products of the CHCl3 conversion. The presence of CCl4 was also noted. The influence of the electrode length and the distance between the electrodes in the narrowest section on CHCl3 conversion was examined. The Pt catalyst revealed some activity in the trichloromethane processing. This resulted in an increased overall CHCl3 conversion with the portion of CHCl3 converted to CCl4 smaller than that in the homogeneous system. The effect of temperature on CHCl3 conversion was found to be significant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. McAdams R (2001) J Phys D: Appl Phys 34:2810

    Article  ADS  Google Scholar 

  2. Penetrante BM, Hsiao HC, Bardsley JN, Merritt BT, Vogtlin GE, Kuthi A, Burkhart CP, Bayless JR (1997) Plasma Sources Sci Technol 6:251

    Article  ADS  Google Scholar 

  3. Chang JS, Myint T, Chakrabarti A, Miziolek A (1997) Jpn J Appl Phys 36:5018

    Article  ADS  Google Scholar 

  4. Penetrante BM, Hsiao MC, Bardsley JN, Merrit BT, Vogtlin GE, Wallman PH, Kuthi A, Burkhart CP, Bayless JR (1995) Phys Lett A 209:69

    Article  ADS  Google Scholar 

  5. Kirkpatrick MJ, Finney WC, Locke BR (2003) Plasmas Polimers 8(3):165

    Article  Google Scholar 

  6. Foglein KA, Szepvolgyi J, Dombi A (2003) Chemosphere 50:9

    Article  Google Scholar 

  7. Yamamoto T, Mizuno K, Tamori I, Nifuku M, Michalska M, Priet G (1996) IEEE Trans Ind Appl 32:100

    Article  Google Scholar 

  8. Futamura S, Zhang A, Einaga H, Kabashima H (2002) Catal Today 72:259

    Article  Google Scholar 

  9. Opalska A, Czernichowski A (2001) In: Proceedings of the 15th international symposium on plasma chemistry, Orleans

  10. Krawczyk K, Ulejczyk B (2004) Plasma Chem Plasma Proc 24(2):155

    Article  Google Scholar 

  11. Krawczyk K, Ulejczyk B (2003) Plasma Chem Plasma Proc 23(2):265

    Google Scholar 

  12. Chen X, Rozak J, Lin JC, Suib SL, Hayashi Y, Matsumoto H (2001) Appl Catal A: Gen 219(1–2):25

    Article  Google Scholar 

  13. Han SB, Oda T, Ono R (2005) IEEE Trans Ind Appl 41(5):1343

    Article  ADS  Google Scholar 

  14. Chmielewski AG, Tymiński B, Licki J, Iller E et al (1993) Radiat Phys Chem 42:663

    Article  ADS  Google Scholar 

  15. Chmielewski AG, Sun Y, Bulka S, Zimek Z (2007) Radiat Phys Chem 76(11–12):1795

    Article  Google Scholar 

  16. Penetrante BM, Bardsley JN, Hsiao MC (1997) Jpn J Appl Phys 36:5007

    Article  ADS  Google Scholar 

  17. Czernichowski A, Czernichowski M (2005) In: Proceedings of the 17th international symposium on plasma chemistry, Toronto

  18. Carla ChS, Kossitsyn M, Iskenderova K, Chirokov A, Cho YI, Gutsol A, Fridman A, (2003) ISPC 16, Toarmina

  19. Czernichowski A (1994) Pure Appl Chem 66:1301

    Article  Google Scholar 

  20. Czernichowski A, Czech T (1991) In: Proceedings of 3rd international symposium on high pressure low temperature plasma chemistry, Strasbourg

  21. Dalaine V, Cormier M, Lefaucheux P (1998) J Appl Phys 83(5):2435

    Article  ADS  Google Scholar 

  22. Krawczyk K, Młotek M (2001) Appl Catal B: Environ 30:233

    Article  Google Scholar 

  23. Krawczyk K, Młotek M, Schmidt-Szałowski K (2001) High Temp Mater Process 5:349

    Google Scholar 

  24. Charamel A, Czernichowski A, Gorius A (1998) US Patent 5 711 859, 27 Jan 1998

  25. Opalińska T, Opalska A, Schmidt-Szałowski K (2005) Plasma processes and polymers. Wiley-VCH Verlag, Weinheim, p 415

    Google Scholar 

  26. Opalińska T, Czernichowski A, Czernichowski P (1997) In: Proceedings of the 6th international symposium plasma chemistry, Lublin, p 149

  27. Indarto A, Choi JW, Lee H, Song HK (2006) Plasma Devices Oper 14(1):1

    Article  Google Scholar 

  28. Indarto A, Choi JW, Lee H, Song HK, Coowanitwong N (2006) Plasma Devices Oper 14(1):15

    Article  Google Scholar 

  29. Indarto A, Choi JW, Lee H, Song HK (2006) J Environ Sci 18(1):83

    Google Scholar 

  30. Indarto A, Yang DR, Choi JW, Lee H, Song HK (2007) Chem Eng Commun 194(8):1111

    Article  Google Scholar 

  31. Indarto A, Yang DR, Azhari CH, Mohtar WHW, Choi JW, Lee H, Song HK (2007) Chem Eng J 131(1–3):337

    Article  Google Scholar 

  32. Czernichowski A, Opalińska T, Potapkin BV (1994) In: Proceedings of the international flame days, clean combustion of waste and non-conventional fuels, Biarritz

  33. Schmidt-Szałowski K, Opalińska T, Sentek J, Krawczyk K, Ruszniak J, Zieliński T, Radomyska K (2004) J Adv Oxid Technol 7(1):39

    Google Scholar 

  34. Liu C, Eliasson B, Xue B, Li Y, Wang Y (2000) React Kinet Catal Lett 74:71

    Article  MATH  Google Scholar 

  35. Hammer T, Kappes T, Baldauf M (2004) Catal Today 89:5

    Article  Google Scholar 

  36. Song HK, Choi JW, Yue SH, Lee H, Na BK (2004) Catal Today 89:27

    Article  Google Scholar 

  37. Khassin AA, Pietruszka B, Heintze M, Parmon VN (2004) React Kinet Catal Lett 82(1):131

    Article  Google Scholar 

  38. Gordon CL, Lobban LL, Mallinson RG (2003) Catal Today 84:51

    Article  Google Scholar 

  39. Nagazoe H, Konuma M, Kobayashi M, Yamaguchi T, Onoe K (2005) ISPC 17, Toronto

  40. Schmidt-Szałowski K, Krawczyk K (2006) In: Proceedings of the 10th international symposium on high pressure low temperature plasma chemistry, Saga

  41. Schmidt-Szałowski K, Krawczyk K, Młotek M (2007) J Adv Oxid Technol 10(2):330

    Google Scholar 

  42. Schmidt-Szałowski K, Jodzis S, Krawczyk K, Młotek M, Górska A (2006) Curr Top Catal 5:39

    Google Scholar 

  43. Foglein KA, Szabó PT, Babievskaya IZ, Szepvolgyi J (2005) Plasma Chem Plasma Process 25(3):289

    Article  Google Scholar 

  44. Penetrante BM, Hsiao MC, Bardsley JN, Merrit BT, Vogtlin GE, Kuthi A, Burkhart CP, Bayless JR (1997) Plasma Sources Sci Technol 6:251

    Article  ADS  Google Scholar 

  45. Fridman A, Nester S, Kennedy LA, Saveliev A, Mutaf-Yardimci O (1999) Prog Energ Combust Sci 25:211

    Article  Google Scholar 

Download references

Acknowledgment

The authors are grateful to the Korea Institute of Science and Technology in Seoul for financial support, which made this study possible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Krawczyk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krawczyk, K., Ulejczyk, B., Song, H.K. et al. Plasma-catalytic Reactor for Decomposition of Chlorinated Hydrocarbons. Plasma Chem Plasma Process 29, 27–41 (2009). https://doi.org/10.1007/s11090-008-9159-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-008-9159-6

Keywords

Navigation