Skip to main content
Log in

Plasma-Assisted Catalytic Decomposition of Carbon Dioxide

  • Reviews
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Published data on the plasma-assisted catalytic decomposition of CO2 are analyzed. The use of a catalyst allows the CO2 conversion and the energy efficiency of the process to be considerably increased. The majority of studies deal with the CO2 decomposition in a barrier discharge reactor, which is associated with simple reactor design. Key characteristics of catalysts, influencing the efficiency of the CO2 decomposition in a gas discharge, have been determined. These are the presence of oxygen vacancies in the catalyst structure and the presence of base sites in the sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Yaashikaa, P.R., Senthil Kumar, P., Varjanic, S.J., and Saravanan, A., J. CO2 Util., 2019, vol. 33, pp. 131–147. https://doi.org/10.1016/j.jcou.2019.05.017

    Article  CAS  Google Scholar 

  2. Roy, S.C., Varghese, O.K., Paulose, M., and Grimes, C.A., ACS Nano, 2010, vol. 4, no. 3, pp. 1259–1278. https://doi.org/10.1021/nn9015423

    Article  CAS  PubMed  Google Scholar 

  3. Erdogan, A. and Orhan, O.Y., Petroleum, 2017, vol. 3, no. 1, pp. 109–126. https://doi.org/10.1016/j.petlm.2016.11.003

    Article  Google Scholar 

  4. Carreon, M.L., Plasma Res. Express, 2019, vol. 1, ID 043001. https://doi.org/10.1088/2516-1067/ab5a30

    Article  CAS  Google Scholar 

  5. Holzer, F., Roland, U., and Kopinke, F.-D., Appl. Catal. B, 2002, vol. 38, no. 3, pp. 163–181. https://doi.org/10.1016/S0926-3373(02)00040-1

    Article  CAS  Google Scholar 

  6. Hossain, Md.M., Mok, Y.S., Nguyen, V.T., Sosiawati, T., Lee, B., Kim, Y.J., Lee, J.H., and Heo, I., Chem. Eng. Res. Des., 2022, vol. 177, pp. 406–417. https://doi.org/10.1016/j.cherd.2021.11.010

    Article  CAS  Google Scholar 

  7. Liu, S., Zhou, J., Liu, W., and Zhang, T., Catal. Lett., 2022, vol. 152, no. 1, pp. 239–253. https://doi.org/10.1007/s10562-021-03629-1

    Article  CAS  Google Scholar 

  8. Bubnov, A.G., Burova, E.Yu., Grinevich, V.I., and Kuvykin, N.A., Russ. J. Appl. Chem., 2005, vol. 78, pp. 1106–1109. https://doi.org/10.1007/s11167-005-0459-9 

    Article  CAS  Google Scholar 

  9. Bubnov, A.G., Burova, E.Yu., Grinevich, V.I., Rybkin, V.V., Kim, J.-K., and Choi, H.-S., Plasma Chem. Plasma Process., 2006, vol. 26, pp. 19–30. https://doi.org/10.1007/s11090-005-8722-7

    Article  CAS  Google Scholar 

  10. Bobkova, E.S., Grinevich, V.I., and Ivantsova, N.A., Plasma Chem. Plasma Process., 2012, vol. 32, no. 4, pp. 703–714. https://doi.org/10.1007/s11090-012-9373-0

    Article  CAS  Google Scholar 

  11. Kim, H.H., Takashima, K., Katsura, S., and Mizuno, A., J. Phys. D: Appl. Phys., 2001, vol. 34, no. 4, pp. 604–613. https://doi.org/10.1088/0022-3727/34/4/322

    Article  CAS  Google Scholar 

  12. Bröer, S. and Hammer, T., Appl. Catal. B, 2000, vol. 28, no. 2, pp. 101–111. https://doi.org/10.1016/S0926-3373(00)00166-1

    Article  Google Scholar 

  13. Wang, Z., Kuang, H., Zhang, J., Chu, L., and Ji, Y., RSC Adv., 2019, vol. 9, pp. 5402–5416. https://doi.org/10.1039/C8RA09217F

    Article  PubMed  PubMed Central  Google Scholar 

  14. Gushchin, P.A., Ivanov, E.V., and Vinokurov, V.A., Tekhnol. Nefti Gaza, 2008, vol. 59, no. 6, pp. 16–20.

    Google Scholar 

  15. Tu, X. and Whitehead, J.C., Int. J. Hydrogen Energy, 2014, vol. 39, no. 18, pp. 9658–9669. https://doi.org/10.1016/j.ijhydene.2014.04.073

    Article  CAS  Google Scholar 

  16. Tu, X. and Whitehead, J.C., Appl. Catal. B, 2012, vol. 125, pp. 439–448. https://doi.org/10.1016/j.apcatb.2012.06.006

    Article  CAS  Google Scholar 

  17. Diao, Y., Zhang, X., Liu, Y., Chen, B., Wu, G., and Shi, C., Appl. Catal. B, 2022, vol. 301, ID 120779. https://doi.org/10.1016/j.apcatb.2021.120779

    Article  CAS  Google Scholar 

  18. Lin, S.-S., Li, P.-R., Jiang, H.-B., Diao, J.-F., Xu, Z.-N., and Guo, G.-C., Catalysts, 2021, vol. 11, no. 12, ID 1433. https://doi.org/10.3390/catal11121433

    Article  CAS  Google Scholar 

  19. Kim, S.S., Jorat, M., Voecks, G., Kuthi, A., Surampudi, S., and Kent, R.L., AIChE J., 2020, vol. 66, ID 16880. https://doi.org/10.1002/aic.16880

    Article  CAS  Google Scholar 

  20. King, B., Patel, D., Chen, J.Z., Drapanauskaite, D., Handler, R., Nozaki, T., and Baltrusaitis, J., Fuel, 2021, vol. 304, ID 121328. https://doi.org/10.1016/j.fuel.2021.121328

    Article  CAS  Google Scholar 

  21. Zhu, X., Liu, X., Lian, H.-Y., Liu, J.-L., and Li, X.-S., Catal. Today, 2019, vol. 337, pp. 69–75. https://doi.org/10.1016/j.cattod.2019.05.015

    Article  CAS  Google Scholar 

  22. Nozaki, T., Hiroyuki, T., Fukui, W., and Okazaki, K., Energy Fuels, 2007, vol. 21, pp. 2525–2530. https://doi.org/10.1021/ef070117+

    Article  CAS  Google Scholar 

  23. Gao, X., Liang, J., Wu, L., Wu, L., and Kawi, S., Catalysts, 2022, vol. 12, no. 1, ID 66. https://doi.org/10.3390/catal12010066

    Article  CAS  Google Scholar 

  24. Iwamoto, M., Akiyama, M., Aihara, K., and Deguchi, T., ACS Catal., 2017, vol. 7, no. 10, pp. 6924–6929. https://doi.org/10.1021/acscatal.7b01624

    Article  CAS  Google Scholar 

  25. Gorky, F., Lucero, J.M., Crawford, J.M., Blake, B., Carreon, M.A., and Carreon, M.L., ACS Appl. Mater. Interfaces, 2021, vol. 13, no. 18, pp. 21338–21348. https://doi.org/10.1021/acsami.1c03115

    Article  CAS  PubMed  Google Scholar 

  26. Liu, T.-W., Gorky, F., Carreon, M.L., and Gómez-Gualdrón, D.A., ACS Sustain. Chem. Eng., 2022, vol. 10, no. 6, pp. 2034–2051. https://doi.org/10.1021/acssuschemeng.1c05660

    Article  CAS  Google Scholar 

  27. Chistyakov, A.V., Konstantinov, G.I., Tsodikov, M.V., and Maximov, A.L., Dokl. Phys. Chem., 2021, vol. 498, no. 1, pp. 49–53. https://doi.org/10.1134/S0012501621390019 

    Article  CAS  Google Scholar 

  28. Tsodikov, M.V., Chistyakov, A.V., Konstantinov, G.I., Nikolaev, S.A., Borisov, R.S., Levin, I.C., Maksimov, Yu.V., and Gekhman, A.E., Russ. J. Appl. Chem., 2021, vol. 94, pp. 1513–1524. https://doi.org/10.1134/S1070427221110069 

    Article  CAS  Google Scholar 

  29. Rönsch, S., Schneider, J., Matthischke, S., Schlüter, M., Götz, M., Lefebvre, J., Prabhakaran, P., and Bajohr, S., Fuel, 2016, vol. 166, pp. 276–296. https://doi.org/10.1016/j.fuel.2015.10.111

    Article  CAS  Google Scholar 

  30. Artz, J., Müller, T.E., and Thenert, K., Chem. Rev., 2018, vol. 118, pp. 434–504. https://doi.org/10.1021/acs.chemrev.7b00435

    Article  CAS  PubMed  Google Scholar 

  31. Godin, J., Liu, W., Ren, S., and Xu, C.C., J. Environ. Chem. Eng., 2021, vol. 9, ID 105644. https://doi.org/10.1016/j.jece.2021.105644

    Article  CAS  Google Scholar 

  32. Ronda-Lloret, M., Wang, Y., Oulego, P., Rothenberg, G., Tu, X., and Shiju, N.R., ACS Sustain. Chem. Eng., 2020, vol. 8, no. 47, pp. 17397–17407. https://doi.org/10.1021/acssuschemeng.0c05565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. George, A., Shen, B., Craven, M., Wang, Y., Kang, D., Wu, C., and Tu, X., Renew. Sustain. Energy Rev., 2021, vol. 135, ID 109702. https://doi.org/10.1016/j.rser.2020.109702

    Article  CAS  Google Scholar 

  34. Mehta, P., Barboun, P., Go, D.B., Hicks, J.C., and Schneider, W.F., ACS Energy Lett., 2019, vol. 4, pp. 1115–1133. https://doi.org/10.1021/acsenergylett.9b00263

    Article  CAS  Google Scholar 

  35. Wang, L., Yi, Y., Wu, C., Guo, H., and Tu, X., Angew. Chem. Int. Ed., 2017, vol. 56, no. 44, pp. 13679–13683. https://doi.org/10.1002/anie.201707131

    Article  CAS  Google Scholar 

  36. Mei, D. and Tu, X., J. CO2 Util., 2017, vol. 19, pp. 68–78. https://doi.org/10.1016/j.jcou.2017.02.015

    Article  CAS  Google Scholar 

  37. Paulussen, S., Verheyde, B., Tu, X., De Bie, C., Martens, T., Petrovic, D., Bogaerts, A., and Sels, B., Plasma Sources Sci. Technol., 2010, vol. 19, ID 034015. https://doi.org/10.1088/0963-0252/19/3/034015

    Article  CAS  Google Scholar 

  38. Matsumoto, H., Tanabe, S., Okitsu, K., Hayashi, Y., and Suib, S.L., Bull. Chem. Soc. Jpn., 1999, vol. 72, no. 11, pp. 2567–2571. https://doi.org/10.1246/bcsj.72.2567

    Article  CAS  Google Scholar 

  39. Lebedev, Y.A. and Shakhatov, V.A., Russ. J. Appl. Chem., 2022, vol. 95, no. 1, pp. 1–20. http://doi.org/10.1134/S1070427222010018

    Article  CAS  Google Scholar 

  40. Mitsingas, C., Rajasegar, R., Hammack, S., and Do, H., IEEE Trans. Plasma Sci., 2016, vol. 44, no. 4, pp. 651–656. https://doi.org/10.1109/TPS.2016.2531641

    Article  CAS  Google Scholar 

  41. Berthelot, A. and Bogaerts, A., J. Phys. Chem. C, 2017, vol. 121, no. 15, pp. 8236–8251. https://doi.org/10.1021/acs.jpcc.6b12840

    Article  CAS  Google Scholar 

  42. Li, L., Zhang, H., Li, X., Kong, X., Xu, R., Tay, K., and Tu, X., J. CO2 Util., 2019, vol. 29, pp. 296–303. https://doi.org/10.1016/j.jcou.2018.12.019

    Article  CAS  Google Scholar 

  43. Zhang, H., Li, L., Li, X., Wang, W., Yan, J., and Tu, X., J. CO2 Util., 2018, vol. 27, pp. 472–479. https://doi.org/10.1016/j.jcou.2018.08.020

    Article  CAS  Google Scholar 

  44. Fortov, V.E., Entsiklopediya nizkotemperaturnoiplazmy (Encyclopedia of Low-Temperature Plasma), thematic vol. VIII-1: Khimiya nizkotemperaturnoi plazmy (Chemistry of Low-Temperature Plasma), Moscow: Yanus-K, 2005, pp. 4–35.

    Google Scholar 

  45. Kim, H.H., Teramoto, Y., Ogata, A., Takagi, H., and Nanba, T., Plasma Chem. Plasma Process., 2016, vol. 36, pp. 45–72. https://doi.org/10.1007/s11090-015-9652-7

    Article  CAS  Google Scholar 

  46. Chen, H.L., Lee, H.M., Chen, S.H., Chao, Y., and Chang, M.B., Appl. Catal. B, 2008, vol. 85, nos. 1–2, pp. 1–9. https://doi.org/10.1016/j.apcatb.2008.06.021

    Article  CAS  Google Scholar 

  47. Chung, W.-C. and Chang, M.-B., Renew. Sustain. Energy Rev., 2016, vol. 62, pp. 13–31. https://doi.org/10.1016/j.rser.2016.04.007

    Article  CAS  Google Scholar 

  48. Kim, H.H., Teramoto, Y., Sano, T., Negishi, N., and Ogata, A., Appl. Catal. B, 2015, vols. 166–167, pp. 9–17. https://doi.org/10.1016/j.apcatb.2014.11.008

    Article  CAS  Google Scholar 

  49. Tu, X., Gallon, H.J., and Whitehead, J.C., Catal. Today, 2013, vol. 211, pp. 120–125. https://doi.org/10.1016/j.cattod.2013.03.024

    Article  CAS  Google Scholar 

  50. Wu, Y.-W., Chung, W.-C., and Chang, M.-B., Int. J. Hydrogen Energy, 2015, vol. 40, no. 25, pp. 8071–8080. https://doi.org/10.1016/j.ijhydene.2015.04.053

    Article  CAS  Google Scholar 

  51. Bogaerts, A., Zhang, Q.-Z., Zhang, Y.-R., Van Laer, K., and Wang, W., Catal. Today, 2019, vol. 337, pp. 3–14. https://doi.org/10.1016/j.cattod.2019.04.077

    Article  CAS  Google Scholar 

  52. Fridman, A., Plasma Chemistry. Cambridge: Cambridge Univ. Press, 2008, p. 268.

    Google Scholar 

  53. Snoeckx, R. and Bogaerts, A., Chem. Soc. Rev., 2017, vol. 46, pp. 5805–5863. https://doi.org/10.1039/C6CS00066E

    Article  CAS  PubMed  Google Scholar 

  54. Scapinello, M., Delikonstantis, E., and Stefanidis, G.D., Chem. Eng. Process.: Process Intensif., 2017, vol. 117, pp. 120–140. https://doi.org/10.1016/j.cep.2017.03.024

    Article  CAS  Google Scholar 

  55. Kogelschatz, U., Plasma Chem. Plasma Process., 2003, vol. 23, no. 1, pp. 1–46. https://doi.org/10.1023/A:1022470901385

    Article  CAS  Google Scholar 

  56. Fridman, A., Chirokov, A., and Gutsol, A., J. Phys. D: Appl. Phys., 2005, vol. 38, no. 2, R1. https://doi.org/10.1088/0022-3727/38/2/R01

    Article  CAS  Google Scholar 

  57. Levedev, Yu.A. and Shakhatov, V.A., Usp. Prikl. Fiz., 2022, vol. 10, no. 2, pp. 109–131. https://doi.org/10.51368/2307-4469-2022-10-2-109-131

    Article  Google Scholar 

  58. Zhang, K., Zhang, G., Liu, X., Phan, A.N., and Luo, K., Ind. Eng. Chem. Res., 2017, vol. 56, no. 12, pp. 3204–3216. https://doi.org/10.1021/acs.iecr.6b04570

    Article  CAS  Google Scholar 

  59. Xu, S., Whitehead, C.J., and Martin, P.A., Chem. Eng. J., 2017, vol. 327, pp. 764–773. https://doi.org/10.1016/j.cej.2017.06.090

    Article  CAS  Google Scholar 

  60. Michielsen, I., Uytdenhouwen, Y., Pype, J., Michielsen, B., Mertens, J., Reniers, F., Meynen, V., and Bogaerts, A., Chem. Eng. J., 2017, vol. 326, pp. 477–488. https://doi.org/10.1016/j.cej.2017.05.177

    Article  CAS  Google Scholar 

  61. Yu, Q., Kong, M., Liu, T., Fei, J., and Zheng, X., Plasma Chem. Plasma Process., 2012, vol. 32, pp. 153–163. https://doi.org/10.1007/s11090-011-9335-y

    Article  CAS  Google Scholar 

  62. Mei, D. and Tu, X., ChemPhysChem, 2017, vol. 18, pp. 3253–3259. https://doi.org/10.1002/cphc.201700752

    Article  CAS  PubMed  Google Scholar 

  63. Li, J., Zhu, S., Lu, K., Ma, C., Yang, D., and Yu, F., J. Environ. Chem. Eng., 2021, vol. 9, ID 104654. https://doi.org/10.1016/j.jece.2020.104654

    Article  CAS  Google Scholar 

  64. Ashford, B., Wang, Y., Poh, C.-K., Chen, L., and Tu, X., Appl. Catal. B, 2020, vol. 276, ID 119110. https://doi.org/10.1016/j.apcatb.2020.119110

    Article  CAS  Google Scholar 

  65. Wang, L., Du, X., Yi, Y., Wang, H., Gul, M., Zhu, Y., and Tu, X., Chem. Commun., 2020, vol. 56, pp. 14801–14804. https://doi.org/10.1039/D0CC06514E

    Article  CAS  Google Scholar 

  66. Ray, D. and Subrahmanyam, Ch., RSC Adv., 2016, vol. 6, pp. 39492–37499. https://doi.org/10.1039/C5RA27085E

    Article  CAS  Google Scholar 

  67. Li, J., Zhai, X., Ma, C., Zhu, S., Yu, F., Dai, B., Ge, G., and Yang, D., Nanomaterials, 2019, vol. 9, ID 1595. https://doi.org/10.3390/nano9111595

    Article  CAS  PubMed Central  Google Scholar 

  68. Zhu, S., Zhou, A., Yu, F., Dai, B., and Ma, C., Plasma Sci. Technol., 2019, vol. 21, ID 085504. https://doi.org/10.1088/2058-6272/ab15e5

    Article  CAS  Google Scholar 

  69. Zhou, A., Chen, D., Ma, C., Yu, F., and Dai, B., Catalysts, 2018, vol. 8, ID 256. https://doi.org/10.3390/catal8070256

    Article  CAS  Google Scholar 

  70. Mei, D., He, Y., Liu, S., Yan, J., and Tu, X., Plasma Process. Polym., 2016, vol. 13, pp. 544–556. https://doi.org/10.1002/ppap.201500159

    Article  CAS  Google Scholar 

  71. Duan, X., Hu, Z., Li, Y., and Wang, B., AIChE J., 2015, vol. 61, no. 3, pp. 898–903. https://doi.org/10.1002/aic.14682

    Article  CAS  Google Scholar 

  72. Wang, B., Li, X., Wang, X., and Zhang, B., J. Environ. Chem. Eng., 2021, vol. 9, ID 106370. https://doi.org/10.1016/j.jece.2021.106370

    Article  CAS  Google Scholar 

  73. Banerjee, A.M., Billinger, J., Nordheden, K.J., and Peeters, F.J.J., J. Vac. Sci. Technol. A, 2018, vol. 36, ID 04F403. https://doi.org/10.1116/1.5024400

    Article  CAS  Google Scholar 

  74. Ray, D., Chawdhury, P., Bhargavi, K.V.S.S., Thatikonda, S., Lingaiah, N., and Subrahmanyam, Ch., J. CO2 Util., 2021, vol. 44, ID 101400. https://doi.org/10.1016/j.jcou.2020.101400

    Article  Google Scholar 

  75. Inagaki, M., Tsumura, T., Kinumoto, T. and Toyoda, M., Carbon, 2019, vol. 141, pp. 580–607. https://doi.org/10.1016/j.carbon.2018.09.082

    Article  CAS  Google Scholar 

  76. Lu, N., Sun, D., Zhang, C., Jiang, N., Shang, K., Bao, X., Li, J., and Wu, Y., J. Phys. D: Appl. Phys., 2018, vol. 51, ID 094001. https://doi.org/10.1088/1361-6463/aaa919

    Article  CAS  Google Scholar 

  77. Ray, D., Chawdhury, P., and Subrahmanyam, Ch., Environ. Res., 2020, vol. 183, no. 8, ID 109286. https://doi.org/10.1016/j.envres.2020.109286

    Article  CAS  PubMed  Google Scholar 

  78. Uytdenhouwen, Y., Van Alphen, S., Michielsen, I., Meynen, V., Cool, P., and Bogaerts, A., Chem. Eng. J., 2018, vol. 348, pp. 557–568. https://doi.org/10.1016/j.cej.2018.04.210

    Article  CAS  Google Scholar 

  79. Lebedev, Yu.A., Plasma Sources Sci. Technol., 2015, vol. 24, no. 5, ID 053001. https://doi.org/10.1088/0963-0252/24/5/053001

    Article  CAS  Google Scholar 

  80. Bogaerts, A., Neyts, E., Gijbels, R., and Van der Mullen, J., Spectrochim. Acta, Part B, 2002, vol. 57, pp. 609–658. https://doi.org/10.1016/S0584-8547(01)00406-2

    Article  Google Scholar 

  81. Shah, Y.T., Verma, J., and Katti, S.S., J. Indian Chem. Soc., 2021, vol. 98, ID 100152. https://doi.org/10.1016/j.jics.2021.100152

    Article  CAS  Google Scholar 

  82. Kozʹak, T. and Bogaerts, A., Plasma Sources Sci. Technol., 2015, vol. 24, ID 015024. https://doi.org/10.1088/0963-0252/24/1/015024

    Article  CAS  Google Scholar 

  83. Ong, M.Y., Nomanbhay, S., Kusumo, F., and Show, P.L., J. Cleaner Prod., 2022, vol. 336, ID 130447. https://doi.org/10.1016/j.jclepro.2022.130447

    Article  CAS  Google Scholar 

  84. Chen, G., Georgieva, V., Godfroid, T., Snyders, R., and Delplancke-Ogletree, M.-P., Appl. Catal. B, 2016, vol. 190, pp. 115–124. https://doi.org/10.1016/j.apcatb.2016.03.009

    Article  CAS  Google Scholar 

  85. Chen, G., Britun, N., Godfroid, T., Georgieva, V., Snyders, R., and Delplancke-Ogletree, M.-P., J. Phys. D: Appl. Phys., 2017, vol. 50, ID 084001. https://doi.org/10.1088/1361-6463/aa5616

    Article  CAS  Google Scholar 

  86. Spencer, L.F. and Gallimore, A.D., Plasma Sources Sci. Technol., 2013, vol. 22, ID 015019. https://doi.org/10.1088/0963-0252/22/1/015019

    Article  CAS  Google Scholar 

  87. Nunnally, T., Gutsol, K., Rabinovich, A., Fridman, A., Gutsol, A., and Kemoun, A., J. Phys. D: Appl. Phys., 2011, vol. 44, ID 274009. https://doi.org/10.1088/0022-3727/44/27/274009

    Article  CAS  Google Scholar 

  88. Zhang, H., Li, L., Xu, R., Huang, J., Wang, N., Li, X., and Tu, X., Waste Dispos. Sustain. Energy, 2020, vol. 2, pp. 139–150. https://doi.org/10.1007/s42768-020-00034-z

    Article  Google Scholar 

  89. Chen, G., Wang, L., Godfroid, T., and Snyders, R., Progress in Plasma-Assisted Catalysis for Carbon Dioxide Reduction in Plasma Chemistry and Gas Conversion, London: IntechOpen, 2018. https://doi.org/10.5772/intechopen.8079

    Book  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to Dr. Sci. (Phys.-Math.) Yu.A. Lebedev for the assistance in manuscript preparation.

Funding

The study was performed within the framework of the government assignment for the Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Golubev.

Ethics declarations

A.L. Maksimov is the Editor-in-Chief of Zhurnal Prikladnoi Khimii/Russian Journal of Applied Chemistry. O.V. Golubev declares that he has no conflict of interest.

Additional information

Translated from Zhurnal Prikladnoi Khimii, No. 5, pp. 547–562, March, 2022 https://doi.org/10.31857/S0044461822050012

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golubev, O.V., Maksimov, A.L. Plasma-Assisted Catalytic Decomposition of Carbon Dioxide. Russ J Appl Chem 95, 617–630 (2022). https://doi.org/10.1134/S1070427222050019

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427222050019

Keywords:

Navigation