Skip to main content
Log in

Modification of Hexatriacontane by O2–N2 Microwave Post-Discharges

  • Original Article
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Etch rates of hexatriacontane (HTC) as high as ~10 mg s−1 m−2 in late O2 post-discharge are obtained at 333 K where no significant UV nor VUV irradiation occurs. Introducing N2 in the gas mixture helps control the ratio of O/O2 densities, which is shown to play a key role in the functionalization or etching of the HTC. The oxygen atoms are required for any further modification of the HTC because they initiate the formation of the radical chains by abstraction of one hydrogen. O(3P) atoms do not contribute directly to break the alkane chain close to room temperature but they can functionalise it. O2 is the important reactive species for the etching because of the role played by the peroxide groups on the scission of the hydrocarbon chains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rongzhi L, Lin Y, Yiu WM (1997). Compos P A: Appl Sci Manufact 28A-1:73–86

    Google Scholar 

  2. Egitto FD, Matienzo LJ (1994). IBM J Res Dev 38(4):423–439

    Google Scholar 

  3. Belmonte T, Pintassilgo CD, Czerwiec T, Henrion G, Hody V, Thiebaut JM, Loureiro J (2005). Surf Coat Technol 200(1–4):26–30

    Article  Google Scholar 

  4. Chu PK, Chen JY, Wang LP, Huang N (2002). Materials Science & Engineering R : Reports, R36 5–6: 143–206

    Article  Google Scholar 

  5. Risbud MV, Dabhade R, Gangal S, Bhonde RR (2002). J Biomater Sci Polym Ed 13(10):1067–1080

    Article  Google Scholar 

  6. Hong J, Truica-Marasescu F, Martinu L, Wertheimer MR (2002). Plasmas Polym. 7(3):245–260

    Article  Google Scholar 

  7. Moreau S, Moisan M, Tabrizan M, Barbeau J, Pelletier J, Ricard A, Yahia L-H (2000). J Appl Phys 88(2):1166–1174

    Article  ADS  Google Scholar 

  8. Philip N, Saoudi B, Crevier M-C, Moisan M, Barbeau J, Pelletier J (2002). IEEE Trans Plasma Sci 30(4):1429–1436

    Article  ADS  Google Scholar 

  9. Ricard A, Moisan M, Moreau S (2001). J Phys D: Appl Phys 34(8):1203–1212

    Article  ADS  Google Scholar 

  10. Schwarzenbach W, Derouard J, Sadeghi N (2001). J Appl Phys 90(11):5491–5496

    Article  ADS  Google Scholar 

  11. Poncin-Epaillard F, Wang W, Ausserre D, Scharzenbach W, Derouard J, Sadeghi N (1998). Europ Phys J: Appl-Phys 4(2):181–191

    Article  ADS  Google Scholar 

  12. Tserepi A, Schwarzenbach W, Derouard J, Sadeghi N (1997). J Vacuum Sci Technol A: Vac Surf Films 15(6):3120–3126

    Article  ADS  Google Scholar 

  13. Schwarzenbach W, Derouard J, Sadeghi N (1997) In: Bordage MC, Gleizes A (eds) XXIII-International conference on phenomena in ionized gases, ICPIG-Proceedings, contributed papers. vol 1. pp 150–151

  14. Tserepi A, Derouard J, Booth JP, Sadeghi N (1997). J Appl Phys 81(5):2124–2130

    Article  ADS  Google Scholar 

  15. Wang W, Poncin-Epaillard F, Brosse JC, Ausserre D (1996). Plasmas and Polymers 1(1):65–85

    Article  Google Scholar 

  16. Fozza AC, Bergeron A, Klemberg-Sapieha JE, Wertheimer MR (1999) In: Lee WW, d’Agostino R, Wertheimer MR (eds) Plasma deposition and treatment of polymers. Symposium pp 109–114.

  17. Fozza AC, Roch J, Klemberg-Sapieha JE, Kruse A, Holländer A, Wertheimer MR (1997). Nucl Instrum Meth B: 131(1/4):205–210

    Article  ADS  Google Scholar 

  18. Wertheimer MR, Fozza AC, Holländer A (1999). Nucl Instrum Meth B: 151:65–75

    Article  ADS  Google Scholar 

  19. Normand F, Granier A, Leprince P, Marec J, Shi MK, Clouet F (1995). Plasma Chem Plasma Proc 15(2):173–197

    Article  Google Scholar 

  20. Clouet F, Shi MK, Prat R, Holl Y, Marie P, Léonard D, De Puydt Y, Bertrand P, Dewez J-L, Doren A (1994). J Adhes Sci Technol 8(4):329–361

    Article  Google Scholar 

  21. Collart EJH, Baggerman JAG, Visser RJ (1995). J Appl Phys 78(1):47–54

    Article  ADS  Google Scholar 

  22. Eggito FD (1990). Pure Appl Chem 62(9):1699–1708

    Article  Google Scholar 

  23. Eggito FD, Matienzo LJ (1994). IBM J Res Develop 38(4):423–439

    Article  Google Scholar 

  24. Eggito FD, Emmi F, Horwath RS, Vukanovic V (1985). J Vac Sci Technol B 3(3):893–904

    Article  Google Scholar 

  25. Leonard D, Bertrand P, Scheuer A, Prat R, Hommet J, Le-Moigne J, Deville JP (1996). J Adhesion Sci Technol 10–11:1165–1197

    Article  Google Scholar 

  26. Cvetanovic RJ (1958). Can J Chem 36:623–634

    Article  Google Scholar 

  27. Cacciatore M, Rutigliano M, Billing GD (1999). J Therm Heat Transf 13:195–203

    Article  Google Scholar 

  28. Villeger S, Cousty S, Ricard A, Sixou M, (2003). J Phys D: Appl Phys 36(13):L60–L62

    Article  ADS  Google Scholar 

  29. SCA, USR-59, CNRS. http://www.sca.cnrs.fr/

  30. Boyd RD, Kenwright AM, Badyal JPS (1998). Acta Polym 49:129–132

    Article  Google Scholar 

  31. NIST (2003) Chemistry WebBook, Standard Reference Database Number 69 – March, 2003, online at: http://webbook.nist.gov/chemistry/

  32. Bellamy LJ (1975) The Infra-red spectra of complex molecules, 3rd edn. Chapman and Hall Ltd, (eds)

  33. Venkataraman NV, Barman S, Vasudevan S, Seshadri R (2002). Chem Phys Lett. 338:139–143

    Article  Google Scholar 

  34. Watwe RM, Spiewak BE, Cortright RD, Dumesic JA (1998). Catal Lett 51:139–147

    Article  Google Scholar 

  35. Ricard A, Moisan M, Moreau S (2001). J Phys D: Appl Phys 34(8):1203–1212

    Article  ADS  Google Scholar 

  36. Cartry G, Magne L, Cernogora G (1999). J Phys D: Appl Phys 32(15):1894–1907

    Article  ADS  Google Scholar 

  37. Gordiets B, Ricard A (1993). Plasma Sources Sci Technol 2(3):158–163

    Article  ADS  Google Scholar 

  38. Dilecce G, De-Benedictis S (1999). Plasma Sources Sci Technol 8(2):266–278

    Article  ADS  Google Scholar 

  39. Amorim J, Baravian G, Jolly J (2000). J Phys D: Appl Phys 33(9):R51–R65

    Article  ADS  Google Scholar 

  40. Normand F, Marec J, Leprince P, Granier A (1991). Mater Sci Eng A A139:103–109

    Article  Google Scholar 

  41. Alam TM, Celina M, Collier JP, Currier BH, Currier JH, Jackson SK, Kuethe DO, Timmins GS (2004). J Poly Sci A: Polym Chem 42(23):5929–5941

    Article  Google Scholar 

  42. Yeom B, Yu Y-J, McKellop HA, Salovey R (1998). J Polym Sci: Part A: Polym Chem 36:329–339

    Article  ADS  Google Scholar 

  43. Daly BM, Yin J (1998). J Biomed Mater Res 42(4):523–529

    Article  Google Scholar 

  44. Devanne T (2003) Vieillissement radiochimique d′un réseau epoxyde Thèse Mécanique et matériaux, Arts et Métiers -ENSAM p 131. Available on line at http://pastel.paristech.org/archive/00000373/

  45. Medhekar VS (2001) Degree of Master of Science in Chemical Engineering, Worcester Polytechnic Institute. See also Medhekar V, Thompson RW, Wang A, Grant McGimpsey W (2002) J Appl Polym Sci 87(5):814–826. Alam TM, Celina M, Collier JP, Currier BH, Currier JH, Jackson SK, Kuethe DO, Timmins GS (2004) J Polym Sci Part A: Polym Chem 42(23):5929–5941

  46. Petruj J, Marchal J (1980). Radiat Phys Chem 16:27–36

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Belmonte.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hody, V., Belmonte, T., Pintassilgo, C.D. et al. Modification of Hexatriacontane by O2–N2 Microwave Post-Discharges. Plasma Chem Plasma Process 26, 251–266 (2006). https://doi.org/10.1007/s11090-006-9017-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-006-9017-3

Keywords

PAC number

Navigation