Skip to main content
Log in

Comparison of Laminar and Turbulent Thermal Plasma Jet Characteristics—A Modeling Study

  • Original Article
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Modeling results are presented to compare the characteristics of laminar and turbulent argon thermal plasma jets issuing into ambient air. The combined-diffusion-coefficient method and the turbulence-enhanced combined-diffusion-coefficient method are employed to treat the diffusion of ambient air into the laminar and turbulent argon plasma jects, respectively. It is shown that since only the molecular diffusion mechanism is involved in the laminar plasma jet, the mass flow rate of ambient air entrained into the laminar plasma jet is comparatively small and less dependent on the jet inlet velocity. On the other hand, since turbulent transport mechanism is dominant in the turbulent plasma jet, the entrainment rate of ambient air into the turbulent plasma jet is about one order of magnitude larger and almost directly proportional to the jet inlet velocity. As a result, the characteristics of laminar plasma jets are quite different from those of turbulent plasma jets. The length of the high-temperature region of the laminar plasma jet is much longer and increases notably with increasing jet inlet velocity or inlet temperature, while the length of the high-temperature region of the turbulent plasma jet is short and less influenced by the jet inlet velocity or inlet temperature. The predicted results are reasonably consistent with available experimental observation by using a DC arc plasma torch at arc currents 80–250 A and argon flow rates (1.8–7.0)×10−4 kg/s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pfender E (1999). Plasma Chem Plasma Process 19:1

    Article  Google Scholar 

  2. Fauchais P (2004). J Phys D: Appl Phys 37:R86

    Article  ADS  Google Scholar 

  3. McKelliget J, Szekely J, Vardelle M, Fauchais P (1982). Plasma Chem Plasma Process 2:317

    Article  Google Scholar 

  4. Chyou YP, Pfender E (1989). Plasma Chem Plasma Process 9:291

    Article  Google Scholar 

  5. Pfender E, Fincke J, Spores E (1991). Plasma Chem Plasma Process 11:529

    Article  Google Scholar 

  6. Murphy AB, Kovitya P (1993) J. Appl Phys 73: 4759

    Article  ADS  Google Scholar 

  7. Fincke JR, Chang CH, Swank WD, Haggard DC (1994). Int J Heat Mass Transfer 37:1673

    Article  Google Scholar 

  8. Bauchire JM, Gonzalez JJ, Gleizes A (1997). Plasma Chem Plasma Process 17:409

    Article  Google Scholar 

  9. Vardelle A, Fauchais P, Dussoubs B, Themelis NJ (1998). Plasma Chem Plasma Process 18:551

    Article  Google Scholar 

  10. Li H-P, Chen Xi (2002). Plasma Chem Plasma Process 22:27

    Article  Google Scholar 

  11. Ramachandran K, Nishiyama H (2002). J Phys D: Appl. Phys. 35:307

    Article  ADS  Google Scholar 

  12. Fincke JR, Crawford DM, Snyder SC, Swank WD, Haggard DC, Williamson RL (2003). Int J Heat Mass Transfer 46:4201

    Article  Google Scholar 

  13. Williamson RL, Fincke JR, Crawford DM, Snyder SC, Swank WD, Haggard DC (2003). Int. J. Heat Mass Transfer 46:4215

    Article  Google Scholar 

  14. Cheng K, Chen Xi (2004). Int J. Heat. Mass. Transfer. 47:5139

    Article  MATH  Google Scholar 

  15. Kuz’min VI, Solonenko OP, Zhukov MF (1995) In Proc. 8th National Thermal Apray Conf., Sept. 11–15, 1995, Houston, pp. 83–88

  16. Osaki K, Fukumasa O, Kobayashi A (2000). Vacuum 59:47

    Article  Google Scholar 

  17. Pan WX, Zhang WH, Zhang WH, Wu CK (2001). Plasma Chem Plasma Process 21:23

    Article  Google Scholar 

  18. Pan WX, Ma W, Wu CK (2002). Plasma Chem Plasma Process 22:271

    Article  Google Scholar 

  19. Pan WX, Ma W, Wu CK (2001) In Zhou YC et al (eds) Mechanics and material engineering for science and experiments. Science Press, Beijing, pp. 427–431

  20. Pan WX, Meng X, Li G, Fei QX, Wu CK (2005). Surf Coat Technol 197:345

    Article  Google Scholar 

  21. Pan WX, Meng X, Chen Xi, Wu CK (2006). Plasma Chem Plasma Process 26:(submitted)

  22. Xu D-Y, Chen Xi, Cheng K (2003). J Phys D: Appl Phys 36:1583

    Article  ADS  Google Scholar 

  23. Cheng K, Chen Xi (2004). J Phys D: Appl Phys 37:2385

    Article  ADS  Google Scholar 

  24. Xu D-Y, Chen Xi, Pan WX (2005). Int J Heat Mass Transfer 48:3253

    Article  Google Scholar 

  25. Xu D-Y, Chen Xi (2005). Int Commun Heat Mass Transfer. 32:939

    Article  Google Scholar 

  26. Pan WX, Li G, Meng X, Ma W, Wu CK (2005). Pure Appl Chem 77:373

    Article  Google Scholar 

  27. Murphy AB (1993). Phys Rev E 48:3594

    Article  ADS  Google Scholar 

  28. Murphy AB (1995). Plasma Chem Plasma Process 15:279

    Article  MathSciNet  Google Scholar 

  29. Murphy AB (1996). J Phys D: Appl Phys 29:1922

    Article  ADS  Google Scholar 

  30. Patankar SV (1980). Numerical heat transfer and fluid flow. Hemisphere, Washington, pp. 115–146

  31. Schlichting H (1979). Boundary layer theory, 7th edn. McGraw-Hill, New York, pp. 230–234

    MATH  Google Scholar 

  32. Loitsyanski LG (1963). Laminar boundary layer. Physico-Mathematic Literature, Moscow, pp. 167–172 (in Russian)

    Google Scholar 

  33. Ricou F, Spalding DB (1961). J Fluid Mech 11:21

    Article  MATH  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xi Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, K., Chen, X. & Pan, W. Comparison of Laminar and Turbulent Thermal Plasma Jet Characteristics—A Modeling Study. Plasma Chem Plasma Process 26, 211–235 (2006). https://doi.org/10.1007/s11090-006-9006-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-006-9006-6

Keywords

Navigation