Skip to main content
Log in

Modelling of Carbon Tetrachloride Decomposition in Oxidative RF Thermal Plasma

  • Original Article
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Decomposition of carbon tetrachloride in a RF thermal plasma reactor was investigated in oxygen–argon atmosphere. The net conversion of CCl4 and the main products of decomposition were determined by GC–MS (Gas Chromatographic Mass Spectroscopy) analysis of the exhaust gas. Temperature and flow profiles had been determined in computer simulations and were used for concentration calculations. Concentration profiles of the species along the axis of the reactor were calculated using a newly developed chemical kinetic mechanism, containing 34 species and 134 irreversible reaction steps. Simulations showed that all carbon tetrachloride decomposed within a few microseconds. However, CCl4 was partly recombined from its decomposition products. Calculations predicted 97.9% net conversion of carbon tetrachloride, which was close to the experimentally determined value of 92.5%. This means that in RF thermal plasma reactor much less CCl4 was reconstructed in oxidative environment than using an oxygen-free mixture, where the net conversion had been determined to be 61%. The kinetic mechanism could be reduced to 55 irreversible reaction steps of 26 species, while the simulated concentrations of the important species were within 0.1% identical compared to that of the complete mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mayor E, Velasco AM, Martin I (2004). J Phys Chem A 108(26):5699

    Article  Google Scholar 

  2. Ricketts CL, Wallis AE, Whitehead JC, Zhang K (2004). J Phys Chem A 108(40):8341

    Article  Google Scholar 

  3. Chen ECM, Chen ES (2004). J Phys Chem A 108(23):5069

    Article  Google Scholar 

  4. Főglein KA, Szabó PT, Dombi A, Szépvölgyi J (2003). Plasma Chem Plasma Process 23:651

    Article  Google Scholar 

  5. Proulx P, Bilodeau JF (1991). Plasma Chem Plasma Process 11:371

    Article  Google Scholar 

  6. Kovács T, Turányi T, Főglein KA, Szépvölgyi J (2005). Plasma Chem Plasma Process 25(2):109

    Article  Google Scholar 

  7. Lutz AE, Kee RJ, Miller JA (1987) SENKIN: A FORTRAN program for predicting homogeneous gas phase chemical kinetics with sensitivity analysis. SANDIA Report No. SAND87–8248

  8. Kee RJ, Rupley FM, Miller JA (1989) CHEMKIN-II: A FORTRAN chemical kinetics package for the analysis of gas-phase chemical kinetics. SANDIA Report No. SAND89–8009B

  9. Avaliable from: http://garfield.chem.elte.hu/plasma/mechanisms.html

  10. Burcat’s Thermodynamical Database. ftp://ftp.technion.ac.il/pub/supported/aetdd/thermodynamics/; also available from: http://garfield.chem.elte.hu/Burcat/burcat.html

  11. NIST Chemical Kinetics Database. http://kinetics.nist.gov/index.php

  12. Turányi T MECHMOD: program for the modification of gas kinetic mechanisms. http://garfield.chem.elte.hu/Combustion/mechmod.htm

  13. Orlandini I, Riedel U (2001). Combust Theory Model 5:447

    Article  ADS  MATH  Google Scholar 

  14. Turányi T.: KINALC: program for the analysis of gas kinetic mechanisms. http://garfield.chem.elte.hu/Combustion/kinalc.htm

  15. Revel J, Boettner JC, Cathonnet M, Bachman JS (1994). J Chim Phys 91:365

    Google Scholar 

  16. Turányi T, Bérces T, Vajda S (1989). Int J Chem Kinet 21:83

    Article  Google Scholar 

  17. Turányi T (1990). New J Chem 14:795

    Google Scholar 

  18. Zsély I Gy, Turányi T (2003). Phys Chem Chem Phys 5:3622

    Article  Google Scholar 

  19. Michael et al. (1993). J Phys Chem 97:1914

    Article  Google Scholar 

  20. Modica, Sillers (1968). J Chem Phys 48:3283

    Article  ADS  Google Scholar 

  21. Kumaran et al. (1997). J Phys Chem 101:8653

    Google Scholar 

  22. Garrett, Truhlar (1979). J Am Chem Soc 101, 4534

    Article  Google Scholar 

  23. Dean, Hanson (1992). Int J Chem Kinet 24:517/532

    Article  Google Scholar 

  24. Huybrechts et al. (1996). Int J chem Kinet 28:27

    Article  Google Scholar 

  25. Haider, Husain (1993). Flame 93:327

    Article  Google Scholar 

  26. Weissman et al. (1980). Int J Chem Kinet 12

  27. Warnatz (1984) In: Gardiner Jr WC, Combustion Chemistry

  28. Wine et al (1985). J Phys Chem 89

  29. Herron (1988). J Phys Chem Ref Data 17

  30. Seetula et al. (1996). Chem Phys Lett 252:299

    Article  ADS  Google Scholar 

  31. Birodi et al. (1976). J Phys Chem 80:1042

    Article  Google Scholar 

  32. Fairbairn (1969). Proc R Soc London A 312:207

    Article  ADS  Google Scholar 

  33. Baldwin et al. (1972). Int J Chem Kinet 4

  34. Dean et al. (1991). J Phys Chem 95

  35. Tsang, Hampson, J Phys Chem Ref Data, 15

  36. Sanhueza, Heicklen (1974). Can J Chem 52:3870

    Article  Google Scholar 

  37. Breitbarth, Rottmayer (1986). Plasma Chem Plasma Process 6

  38. Ticc et al. (1980). Chem Phys Lett 73

  39. Baulch et al. (1992). J Phys Chem Ref Data 21:411

    Article  ADS  Google Scholar 

  40. Bodenstein et al. (1938). Z Phys Chem (Lipizig) 40

  41. Lim Michael (1994). J Phys Chem 98:211

    Article  Google Scholar 

  42. Modical (1970). J Phys Chem 74:1194

    Article  Google Scholar 

  43. Garrett, Truhlar (1979). J Am Chem Soc 101

  44. Herron (1988). J Phys Chem Ref Data 17

  45. Atkinson et al. (2001) Not in System

  46. Basco and Dorga (1971). Proc R Soc London A 323

  47. DeMore et al. (1997). JPL Publication 97–4:1

  48. Atkinson et al. (1997). J Phys Chem Ref Data 26:521

    ADS  Google Scholar 

  49. Olbregts (1980) J Photochem 14

  50. Bernand et al. (1973). J Chem Soc Faraday Trans 1:69

    Google Scholar 

  51. Forst, Caralp (1991). J Chem Soc Faraday Trans 87:2307

    Article  Google Scholar 

  52. Jayanty et al. (1975). J Photochem 4

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katalin Főglein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kovács, T., Turányi, T., Főglein, K. et al. Modelling of Carbon Tetrachloride Decomposition in Oxidative RF Thermal Plasma. Plasma Chem Plasma Process 26, 293–318 (2006). https://doi.org/10.1007/s11090-006-9003-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-006-9003-9

Keywords

Navigation