Skip to main content
Log in

Numerical Prediction of the Noise Emission from a Turbulent Argon Thermal-Plasma Jet Issuing into Ambient Air

  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

This paper attempts to predict the noise emission characteristics of a turbulent argon thermal-plasma jet issuing into ambient air. The flow, temperature and concentration fields and turbulence characteristics of the turbulent plasma jet are computed at first, and then the noise emission from the plasma jet to a sideline far-field observer is calculated using the approach proposed by Fortuné and Gervais (AIAA J. 37(1999)1055) for predicting the noise emission from a turbulent, hot but non-ionized, air jet after some modification. The diffusion of ambient air into the turbulent argon plasma jet is handled using the turbulence-enhanced combined–diffusion-coefficient method. Velocity fluctuation correlations (aerodynamic noise source) in the plasma jet are calculated still using the K-ɛ two-equation turbulence model, but the temperature-velocity fluctuation correlations (entropic noise source) within the jet are calculated by solving a second-order turbulent Reynolds heat-flux transport equation in order to better deal with the contribution of temperature fluctuation to the noise emission. It is shown that among the contributions of aerodynamic noise source, entropic noise source and their mixed effect, the entropic noise source (i.e. the temperature-velocity fluctuation correlations) is dominant for the noise emission from the turbulent plasma jet to the sideline observer. The noise intensity increases with increasing plasma jet temperature or velocity. The predicted noise frequency spectrum characteristics and noise intensity levels are shown to be reasonably consistent with available experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Pfender (1999) Plasma Chem. Plasma Process. 19 1–31 Occurrence Handle10.1023/A:1021899731587

    Article  Google Scholar 

  2. P. Fauchais A. Vardelle (2002) Int. J. Therm. Sci. 39 852–870

    Google Scholar 

  3. P. Fauchais (2004) J. Phys. D: Appl. Phys. 37 R86–R108 Occurrence Handle10.1088/0022-3727/37/9/R02 Occurrence Handle2004JPhD...37R..86F

    Article  ADS  Google Scholar 

  4. D. A. Scott P. Kovitya G. N. Haddad (1989) J. Appl. Phys. 66 5232–5239 Occurrence Handle1989JAP....66.5232S

    ADS  Google Scholar 

  5. R. Westhoff J. Szekely (1991) J. Appl. Phys. 70 3455–3466 Occurrence Handle10.1063/1.349238 Occurrence Handle1991JAP....70.3455W

    Article  ADS  Google Scholar 

  6. H.-P. Li Xi Chen (2001) J. Phys. D: Appl. Phys. 34 L99–L102 Occurrence Handle2001JPhD...34L..99L

    ADS  Google Scholar 

  7. Z. Duan, investigations of plasma instability in a spray torch, Ph. D. Thesis, University of Minnesota (2002).

  8. J. M. Park K. S. Kim T. H. Hwang S. H. Hong (2004) IEEE Trans. Plasma Sci. 32 479–487 Occurrence Handle2004ITPS...32..479P

    ADS  Google Scholar 

  9. E. Pfender J. Fincke R. Spores (1991) Plasma Chem. Plasma Process 11 529–543 Occurrence Handle10.1007/BF01447164

    Article  Google Scholar 

  10. J. R. Fincke, D. M. Crawford, S. C. Snyder, W. D. Swank, D. C. Haggard D C, and R. L. Williamson, Int. J. Heat Mass Transfer 46, 4201–4213 & 4215–4228 (2003).

  11. K. Cheng Chen Xi (2004) Int. J. Heat Mass Transfer 47 IssueID23 5139–5148 Occurrence Handle1098.76651

    MATH  Google Scholar 

  12. A. Vardelle P. Fauchais B. Dussoubs N. J. Themelis (1998) Plasma Chem. Plasma Process. 18 551–574 Occurrence Handle10.1023/A:1021815417648

    Article  Google Scholar 

  13. H.-P. Li Chen Xi (2002) Plasma Chem. Plasma Process. 22 27–58 Occurrence Handle10.1023/A:1012988430995

    Article  Google Scholar 

  14. D.-Y. Xu Xi Chen K. Cheng (2003) J. Phys. D: Appl. Phys. 36 1583–1594 Occurrence Handle2003JPhD...36.1583X

    ADS  Google Scholar 

  15. K. Ramachandran H. Nishiyama (2004) Thin Solid Films 457 158–167 Occurrence Handle10.1016/j.tsf.2003.12.031 Occurrence Handle2004TSF...457..158R

    Article  ADS  Google Scholar 

  16. P. Fauchais M. Fukumoto A. Vardelle M. Vardelle (2004) J. Thermal Spray Technol. 13 337–360 Occurrence Handle2004JTST...13..337F

    ADS  Google Scholar 

  17. C. K. Tam L. Auriault (1999) AIAA J. 37 145–153

    Google Scholar 

  18. C. K. Tam A. Ganesan (2004) AIAA J. 42 26–34 Occurrence Handle10.2514/1.9027

    Article  Google Scholar 

  19. V. Fortuné Y. Gervais (1999) AIAA J. 37 1055–1061

    Google Scholar 

  20. M. J. Lighthill (1952) Proc. Royal Soc. London A211 564–587 Occurrence Handle1952RSPSA.211..564L Occurrence Handle47459

    ADS  MathSciNet  Google Scholar 

  21. M. J. Lighthill (1954) Proc Royal Soc London A222 1–32 Occurrence Handle1954RSPSA.222....1L Occurrence Handle61515

    ADS  MathSciNet  Google Scholar 

  22. Xi Chen and Gu Y.-X., Proc. 15th Int. Symp. Plasma Chemistry, Orleans, 9–13 July, 2001, Vol. 3, 1045–1050.

  23. A. B. Murphy (1993) Physical Review E 48 3594–3603 Occurrence Handle10.1103/PhysRevE.48.3594 Occurrence Handle1993PhRvE..48.3594M

    Article  ADS  Google Scholar 

  24. A. B. Murphy (1995) Plasma Chem. Plasma Process. 15 279–307 Occurrence Handle10.1007/BF01459700 Occurrence Handle1363213

    Article  MathSciNet  Google Scholar 

  25. C. J. Chen S. Y. Jaw (1998) Fundamentals of Turbulence Modeling Taylor & Francis New York

    Google Scholar 

  26. C. Bailly, A statistical description of supersonic jet mixing noise, AIAA Paper 97–1575 (1997).

  27. S. V. Patankar (1980) Numerical Heat Tansfer and Fluid Flow McGraw-Hill New York

    Google Scholar 

  28. K. A. Gross (2002) J. Thermal Spray Technol. 11 350–358 Occurrence Handle2002JTST...11..350G

    ADS  Google Scholar 

  29. D.-Y. Ma (1988) Chin J. Acoustics 7 29–37 Occurrence Handle1988ASAJ...83...29M

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xi Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, K., Chen, X. Numerical Prediction of the Noise Emission from a Turbulent Argon Thermal-Plasma Jet Issuing into Ambient Air. Plasma Chem Plasma Process 25, 677–698 (2005). https://doi.org/10.1007/s11090-005-6820-1

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-005-6820-1

Keywords

Navigation