Skip to main content
Log in

Effect of Temperature and Water Content on the Oxidation Behaviour and Cr Evaporation of High-Cr Alloys for SOFC Cathode Air Preheaters

  • Original Paper
  • Published:
High Temperature Corrosion of Materials Aims and scope Submit manuscript

Abstract

High temperature alloys are being investigated for use in cathode air pre-heater for solid oxide fuel cell systems because of their high thermal conductivity, formability, manufacturability, and superior mechanical properties. However, it is well-known that high temperature alloys often contain a high concentration of Cr which presents a risk of evaporation and contaminating the cathode of the solid oxide fuel cell (SOFC). The oxidation and Cr2O3 evaporation mechanisms of the alloys including alloy 625, SS309, and alloy 318 have been investigated by varying temperatures and water content of the exposure atmosphere. For the influence of water content, the alloys were isothermally exposed at 850 °C in dry air and air containing 1%, 3% and 9% of H2O at a high flow rate for 168 h. For the influence of temperature, the alloys were isothermally exposed at 650 °C, 750 °C and 850 °C in a 6.0 L/min air stream containing 3% H2O for 168 h. The results of this study show that Cr2O3 evaporation and oxidation rates were dramatically reduced with decreasing temperatures for alloy 625 and SS309. Alloy 318 exhibited a decreased oxidation rate with decreasing temperature, but it demonstrated a reverse trend to the temperature-dependent Cr2O3 evaporation compared to alloy 625 and SS309. The major effect of water vapour on the three tested materials appeared to be the further enhancement of Cr2O3 evaporation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. E. J. Naimaster and A. K. Sleiti, Energy Build. 61, 2013 (153–160).

    Google Scholar 

  2. M. Gandiglio, A. Lanzini, M. Santarelli, and P. Leone, Energy Build. 69, 2014 (381–393).

    Google Scholar 

  3. Lee H, Bush J, Hwang Y, Radermacher R. Modeling of micro-CHP (combined heat and power) unit and evaluation of system performance in building application in United States. 2013; doi:https://doi.org/10.1016/j.energy.2013.05.015.

  4. A. Hawkes, I. Staffell, D. Brett, and N. Brandon, Energy and Environmental Science. 2, 2009 (729–744).

    CAS  Google Scholar 

  5. L. Barelli, G. Bidini, F. Gallorini, and A. Ottaviano, International Journal of Hydrogen Energy. 36, 2011 (3206–3214).

    CAS  Google Scholar 

  6. T. Elmer, M. Worall, S. Wu, and S. B. Riffat, Applied Thermal Engineering 90, 2015 (1082–1089).

    Google Scholar 

  7. HEATSTACK. Available at: http://www.heatstack.eu/. Accessed May 24, 2019.

  8. H. C. Graham and H. H. Davis, Journal of the American Ceramic Society. 54, 1971 (89–93).

    CAS  Google Scholar 

  9. B. B. Ebbinghaus, Combustion and Flame 93, 1993 (119–137).

    CAS  Google Scholar 

  10. K. Hilpert, D. Das, M. Miller, D. H. Peck, and R. Weiss, Journal of Electrochemical Society 143, 1996 (3642–3647).

    CAS  Google Scholar 

  11. E. J. Opila, D. L. Myers, N. S. Jacobson, et al., Journal of Physical Chemistry A. 111, 2007 (1971–1980).

    CAS  Google Scholar 

  12. W. J. Quadakkers, J. Piron-Abellan, V. Shemet, and L. Singheiser, Materials at High Temperatures. 20, 2003 (115–127).

    CAS  Google Scholar 

  13. Asteman H, Svensson J-E, Norell M, Johansson L-G. Oxidation of Metals. 2000 54.

  14. S. P. Jiang and X. Chen, International Journal of Hydrogen Energy. 39, 2014 (505–531).

    CAS  Google Scholar 

  15. R. Sachitanand, M. Sattari, J.-E.E. Svensson, and J. Froitzheim, International Journal of Hydrogen Energy 38, 2013 (15328–15334).

    CAS  Google Scholar 

  16. S. Geng, J. Zhu, M. P. Brady, H. U. Anderson, X.-D. Zhou, and Z. Yang, Journal of Power Sources. 172, 2007 (775–781).

    CAS  Google Scholar 

  17. B. A. Pint, Oxidation of Metals. 95, 2021 (335–357).

    CAS  Google Scholar 

  18. M. Stanislowski, J. Froitzheim, L. Niewolak, et al., Journal of Power Sources. 164, 2007 (578–589).

    CAS  Google Scholar 

  19. H. Falk-Windisch, J. E. Svensson, and J. Froitzheim, Journal of Power Sources. 287, 2015 (25–35).

    CAS  Google Scholar 

  20. Y. J. Park, G. Min, and J. Hong, Energy Conversion Management 182, 2019 (351–368).

    Google Scholar 

  21. C. Gindorf, L. Singheiser, and K. Hilpert, Journal of Physics and Chemistry of Solids. 66, 2005 (384–387).

    CAS  Google Scholar 

  22. E. J. Opila, N. S. Jacobson, D. L. Myers, and E. H. Copland, The Journal of the Minerals, Metals & Materials Society. 58, 2006 (22–28).

    CAS  Google Scholar 

  23. X. Chen, Y. Zhen, J. Li, and S. P. Jiang, International Journal Hydrogen Energy 35, 2010 (2477–2485).

    CAS  Google Scholar 

  24. J. Froitzheim, H. Ravash, E. Larsson, L. G. Johansson, and J. E. Svensson, Journal of the Electrochemical Society 157, 2010 (B1295–B1300).

    CAS  Google Scholar 

  25. K. Zhang, A. El-Kharouf, J. E. Hong, and R. Steinberger-Wilckens, Corrosion Science 2020. https://doi.org/10.1016/j.corsci.2020.108612.

    Article  Google Scholar 

  26. C. Key, J. Eziashi, J. Froitzheim, R. Amendola, R. Smith, and P. Gannon, Journal of the Electrochemical Society 161, 2014 (C373–C381).

    CAS  Google Scholar 

  27. I. G. Wright and R. B. Dooley, International Materials Reviews. 55, 2010 (129–167).

    CAS  Google Scholar 

  28. E. A. Lass, M. R. Stoudt, M. E. Williams, et al., Metallurgical and Materials Transactions A. 48A, 2017 (5549).

    Google Scholar 

  29. D. M. Gorman, R. L. Higginson, H. Du, G. McColvin, A. T. Fry, and R. C. Thomson, Oxidation of Metals. 79, 2013 (553–566).

    CAS  Google Scholar 

  30. N. K. Othman, N. Othman, J. Zhang, and D. J. Young, Corrosion Science 51, 2009 (3039–3049).

    CAS  Google Scholar 

  31. D. J. Young, Materials Science Forum. 595–598, 2008 (1189–1197).

    Google Scholar 

  32. J. Zurek, D. J. Young, E. Essuman, et al., Materials Science and Engineering A. 477, 2008 (259–270).

    Google Scholar 

  33. P. Alnegren, M. Sattari, J. E. Svensson, and J. Froitzheim, Journal of Power Sources. 392, 2018 (129–138).

    CAS  Google Scholar 

  34. L. Jian, P. Jian, X. Jianzhong, and Q. Xiaoliang, Journal of Power Sources. 139, 2005 (182–187).

    Google Scholar 

  35. M. G. C. Cox, B. McEnaney, and V. D. Scott, Philosophical Magazine. 26, 1972 (839–851).

    CAS  Google Scholar 

  36. B. Hua, Y. Kong, W. Zhang, J. Pu, B. Chi, and L. Jian, Journal of Power Sources. 196, 2011 (7627–7638).

    CAS  Google Scholar 

  37. T. Liu, L. Wang, C. Wang, and H. Shen, Corrosion Science 104, 2016 (17–25).

    CAS  Google Scholar 

  38. P. Y. Hou and J. Stringer, Materials Science and Engineering: A. 202, 1995 (1–10).

    Google Scholar 

  39. Birks N, Meier GH, Pettit FS. Mechanisms of oxidation. In: Introduction to the High-Temperature Oxidation of Metals. Cambridge: Cambridge University Press; 2006:39–74. doi:https://doi.org/10.1017/CBO9781139163903.005.

  40. Young DJ. 2016 The Nature of High Temperature Oxidation. In: High Temperature Oxidation and Corrosion of Metals, doi:https://doi.org/10.1016/b978-0-08-100101-1.00001-7.

  41. D. Zou, Y. Zhou, X. Zhang, W. Zhang, and Y. Han, Materials Characterization 136, 2018 (435–443).

    CAS  Google Scholar 

  42. Y. Behnamian, A. Mostafaei, A. Kohandehghan, et al., Corrosion Science 106, 2016 (188–207).

    CAS  Google Scholar 

  43. K. A. Unocic and B. A. Pint, Surface Coatings Technology 237, 2013 (8–15).

    CAS  Google Scholar 

  44. F. Liu, H. Götlind, J.-E.E. Svensson, L.-G.G. Johansson, and M. Halvarsson, Corrosion Science 50, 2008 (2272–2281).

    CAS  Google Scholar 

  45. H. Buscail, S. Heinze, Ph. Dufour, and J. P. Larpin, Oxidation of Metals 47, 1997 (445–464).

    CAS  Google Scholar 

  46. H. Götlind, A. F. Liu, J.-E. Svensson, et al., Oxidation of Metals 67, 2007 (251–266).

    Google Scholar 

  47. J. Engkvist, S. Canovic, K. Hellström, et al., Oxidation of Metals 73, 2010 (233–253).

    CAS  Google Scholar 

  48. S. R. J. Saunders, M. Monteiro, and F. Rizzo, Progress in Materials Science 53, 2008 (775–837).

    CAS  Google Scholar 

  49. H. El Kadiri, R. Molins, Y. Bienvenu, and M. F. Horstemeyer, Oxidation of Metals. 64, 2005 (63–97).

    Google Scholar 

  50. I. Kvernes, M. Oliveira, and P. Kofstad, Corrosion Science 17, 1977 (237–252).

    CAS  Google Scholar 

  51. H. Al-Badairy, D. Naumenko, J. Le Coze, G. J. Tatlock, and W. J. Quadakkers, Materials at High Temperatures. 20, 2014 (405–412).

    Google Scholar 

  52. K. Onal, M. C. Maris-Sida, G. H. Meier, and F. S. Pettit, Materials at High Temperatures. 20, 2003 (327–337).

    CAS  Google Scholar 

Download references

Acknowledgements

This work was part of the HEATSTACK project which was funded by the European Union’s H2020 Programme through the Fuel Cells and Hydrogen Joint Technology (FCH-JU) under grant agreement No. 700564.

Author information

Authors and Affiliations

Authors

Contributions

KZ, AEK contributed to conception and design of study. KZ, TC contributed to acquisition of data. KZ, AEK contributed to analysis and/or interpretation of data. KZ contributed to drafting the manuscript. AEK, RSW contributed to revising the manuscript critically for important intellectual content. RSW contributed to approval of the version of the manuscript to be published.

Corresponding author

Correspondence to Kun Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, K., El-Kharouf, A., Caykara, T. et al. Effect of Temperature and Water Content on the Oxidation Behaviour and Cr Evaporation of High-Cr Alloys for SOFC Cathode Air Preheaters. High Temperature Corrosion of mater. 100, 21–45 (2023). https://doi.org/10.1007/s11085-023-10167-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-023-10167-1

Keywords

Navigation