Skip to main content
Log in

Invited Review Paper in Commemoration of Over 50 Years of Oxidation of Metals: Current Aspects of Deposit-Induced Corrosion

  • Review
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Alloys and coatings used in high temperature applications are often subject to surface degradation influenced by the presence of deposits. Typical examples are fireside corrosion in coal-fired boilers and hot corrosion of blades and vanes in the hot sections of gas turbines. Depending on the source, deposit compositions may occur in a wide range from primarily sulfate to primarily oxide and various combinations of the two. There does not seem to be evidence of severe corrosion caused by gaseous Na2SO4. Generally, severe corrosion occurs when the deposits are liquid. However, significant corrosion has been observed in some cases with deposits, which are nominally solid. Corrosion is often caused by liquid deposits, in which negative oxide solubility gradients for alloy components are established across the deposits by rapid interface reactions. Hot corrosion can occur at temperatures near 700 °C by a variety of mechanisms if a phase which allows rapid transport is formed. This includes compounds such as Na2MoO4 (even in atmospheres without SO3), MSO4–Na2SO4 solutions or metastable nanostructured phases. Calling all corrosion in this temperature regime “Type II” can be misleading with regard to mechanism. There are similarities in the underlying mechanisms of some forms of hot corrosion in the 700 °C range and fireside corrosion in that they involve synergistic fluxing. The corrosive species responsible for fireside corrosion of ferrous alloys is a liquid (Na,K)2SO4–Fe2(SO4)3 solution and not alkali iron trisulfate. The propagation mechanism involves a synergistic dissolution process of protective Cr2O3 and Fe2O3. Terms such as “Type I,” “Type II” and “gas-phase-induced acidic fluxing” should be used with care in describing mechanisms of deposit-induced corrosion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Adapted from [29]

Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33

Similar content being viewed by others

References

  1. W. T. Reid, External Corrosion and Deposits Boilers and Gas Turbines, (American Elsevier Publishing Company Inc., New York, 1971).

    Google Scholar 

  2. J. Stringer, Annual Review of Material Science 7, 1977 (477–509).

    Article  CAS  Google Scholar 

  3. I. G. Wright and S. C. Kung, Materials at High Temperatures 35, 2018 (316).

    Article  CAS  Google Scholar 

  4. F. S. Pettit, Oxidation of Metals 76, 2011 (1).

    Article  CAS  Google Scholar 

  5. N. L. Ndamka, R. G. Wellman and J. R. Nicholls, Materials at High Temperatures 33, 2016 (44).

    Article  CAS  Google Scholar 

  6. G. P. Huffman and F. E. Huggins, Reactions and Transformations of Coal Mineral Matter at Elevated Temperatures. US Steel Corporation Technical Center, Monroeville, PA. The American Chemical Society, Vol. 188. No. 1155, 1984.

  7. J. G. Tschinkel, Corrosion 28, 1972 (161).

    Article  CAS  Google Scholar 

  8. N. S. Bornstein, JOM 48, 1996 (37).

    Article  CAS  Google Scholar 

  9. N. S. Bornstein, Materials Science Forum 251–254, 1997 (127).

    Article  Google Scholar 

  10. J. Smeggil and J. G. Smeggil, Hot Corrosion of Turbine Materials in the Presence of Mixed Sulfates, (ONR Final Technical Report, UTRC, East Hartford, CT, 2000).

    Google Scholar 

  11. M. P. Borom, C. A. Johnson and L. A. Peluso, Surface and Coatings Technology 86–87, 1996 (116).

    Article  Google Scholar 

  12. K.-Y. Jung, Ph. D Thesis, University of Pittsburgh, 2009.

  13. W. Braue, The Journal of Materials Science 44, 2009 (1164–1675).

    Article  Google Scholar 

  14. W. Braue, P. Mechnich and P. W. M. Peters, Materials at High Temperatures 28, 2011 (315).

    Article  CAS  Google Scholar 

  15. W. Braue and P. Mechnich, Journal of the American Ceramic Society 94, 2011 (4483).

    Article  CAS  Google Scholar 

  16. N. Bohna, Ph. D Thesis, Univ. of Pittsburgh, 2015.

  17. V. Tolpygo, Oxidation of Metals 88, 2017 (87).

    Article  CAS  Google Scholar 

  18. B. S. Lutz, R. W. Jackson, N. M. Abdul-Jabbar, V. Tolpygo and C. G. Levi, Oxidation of Metals 88, 2017 (73).

    Article  CAS  Google Scholar 

  19. D. A. Shifler, Materials at High Temperatures 35, 2018 (225).

    Article  CAS  Google Scholar 

  20. P. Hancock, Materials Science and Technology 3, 1987 (536).

    Article  CAS  Google Scholar 

  21. S. Pahlavanyali, H. T. Pang, F. Li, S. Bagnali and C. Rae, Materials Science and Technology 30, 2014 (1890).

    Article  CAS  Google Scholar 

  22. M. A. DeCrescente and N. S. Bornstein, Corrosion 24, 1968 (127).

    Article  CAS  Google Scholar 

  23. P. Knutsson, H. Lai and K. Stiller, Corrosion Science 73, 2013 (230).

    Article  CAS  Google Scholar 

  24. M. G. Lawson, F. S. Pettit and J. R. Blachere, Journal of Materials Research 8, 1993 (1964).

    Article  CAS  Google Scholar 

  25. A. Rahmel, W. Jaeger and Z. Anorg, Chem. 303, 1960 (90).

    CAS  Google Scholar 

  26. K. L. Luthra, Metallurgical Transactions A 13A, 1982 (1647).

    Article  Google Scholar 

  27. K. T. Chiang, G. H. Meier and R. A. Perkins, Journal of Materials for Energy Systems 6, 1984 (71).

    Article  CAS  Google Scholar 

  28. N. Birks, G. H. Meier and F. S. Pettit, Introduction to the High Temperature Oxidation of Metals, (Cambridge University Press, Cambridge, 2006).

    Book  Google Scholar 

  29. R. A. Rapp, Corrosion 42, 1986 (568).

    Article  CAS  Google Scholar 

  30. R. A. Rapp and K. S. Goto, in Molten Salts, eds. J. Braunstein and J. R. Selman (Electrochemical Society, Pennington, 1981), p. 81.

    Google Scholar 

  31. N. Otsuka and R. A. Rapp, Journal of Electrochemical Society 137, 1990 (46).

    Article  CAS  Google Scholar 

  32. Y. S. Hwang and R. A. Rapp, Journal of Electrochemical Society 137, (4), 1990 (1276).

    Article  CAS  Google Scholar 

  33. L. Longa-Nava, Y. S. Zhang, M. Takemoto and R. A. Rapp, Corrosion Science 52, 1996 (680).

    Article  CAS  Google Scholar 

  34. B. S. Lutz, J. M. Alvarado-Orozco, L. Garcia-Fresnillo and G. H. Meier, Oxidation of Metals 88, 2017 (599).

    Article  CAS  Google Scholar 

  35. K. L. Luthra, in High Temperature Corrosion, ed. R. A. Rapp (NACE Houston 1983), p. 507.

  36. K. L. Luthra, Metallurgical and Materials Transactions A 13A, 1982 (1843).

    Article  Google Scholar 

  37. K. L. Luthra, Metallurgical and Materials Transactions A 13A, 1982 (1853).

    Article  Google Scholar 

  38. J. M. Alvarado-Orozco, J. E. Garcia-Herrera, B. Gleeson, F. S. Pettit and G. H. Meier, Oxidation of Metals 90, 2018 (527).

    Article  CAS  Google Scholar 

  39. J. E. Garcia-Herrera, L. Garcia-Fresnillo and G. H. Meier, Univ. of Pittsburgh (unpublished research).

  40. W.-J. Zhang and R. Sharghi-Moshtaghin, Metallurgical and Materials Transactions A 49A, 2018 (4362).

    Article  Google Scholar 

  41. E. Kistler, W. T. Chen, G. H. Meier and B. Gleeson, Materials and Corrosion 70, 2019 (1346).

    Article  CAS  Google Scholar 

  42. K. Y. Jung, F. S. Pettit and G. H. Meier, Materials Science Forum 595–598, 2008 (805).

    Article  Google Scholar 

  43. T. Gheno, G. H. Meier and B. Gleeson, Oxidation of Metals 84, 2015 (185).

    Article  CAS  Google Scholar 

  44. P. T. Brennan, Ph. D Thesis, Univ. of Pittsburgh, 2015.

  45. B. S. Lutz, G. R. Holcomb and G. H. Meier, Oxidation of Metals 84, 2015 (353).

    Article  CAS  Google Scholar 

  46. I. G. Wright and J. P. Shingledecker, Materials at High Temprature 32, 2015 (426).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author gratefully acknowledges the contributions of many students and postdocs and collaboration over the years with his University colleague, Fred Pettit, who provided a wealth of knowledge of hot corrosion, and his late colleague, Roger Perkins, who provided his insight and cleverness in experimental design. Prof. Brian Gleeson is acknowledged for many helpful comments on the manuscript. Much of the work described was supported by the Office of Naval Research, most recently, under ONR Contract N00014-10-1-0661, David A. Shifler, Scientific Monitor.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. H. Meier.

Ethics declarations

Conflict of interest

The author declares he has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meier, G.H. Invited Review Paper in Commemoration of Over 50 Years of Oxidation of Metals: Current Aspects of Deposit-Induced Corrosion. Oxid Met 98, 1–41 (2022). https://doi.org/10.1007/s11085-020-10015-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-020-10015-6

Keywords

Navigation