Skip to main content

Advertisement

Log in

Reinterpretation of Type II Hot Corrosion of Co-Base Alloys Incorporating Synergistic Fluxing

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The components of gas-turbine engines operating in marine environments are highly susceptible to hot corrosion, which is typically classified as Type II (650–750 °C) and Type I (900–950 °C) hot-corrosion attack. Even though hot-corrosion has been widely investigated in the last 50 years, several critical questions remain unanswered and new ones have emerged based on recent observations that, in part, are associated with the increasing complexity of the alloy systems and the sulfate-deposit chemistries. The present work is focused on the Type II hot-corrosion mechanism for Co-base alloys. Observations for a CoCrAlY model alloy (isothermally exposed at 700 and 800 °C under different atmospheres, including: air and O2 with 100 and 1000 ppm SO2) suggest the rapid dissolution of Co (as Co-oxide) is not the controlling factor in the degradation mechanism, as was proposed by Luthra, since the γ-phase which is richer in Co, is not attacked as significantly as the Al-rich β-phase. To the contrary, it is suggested that Al (and Cr) is (are) the element(s) which is (are) removed first. A modified interpretation of the Type II hot-corrosion mechanism is proposed, which is based on the synergistic fluxing model developed by Hwang and Rapp.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Adapted from [24]

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Adapted from [26]

Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. J. Stringer, Annual Review of Materials Research 7, 477 (1977).

    CAS  Google Scholar 

  2. F. S. Pettit and C. S. Giggins, Hot Corrosion, in Superalloy II (1987), p. 327.

  3. N. Birks, G. H. Meier and F. S. Pettit, Hot corrosion, in Introduction to the High Temperature Oxidation of Metals, (Cambridge University Press, New York, 2006), p. 205.

  4. F. Pettit, Oxidation of Metals 76, 1 (2011).

    Article  CAS  Google Scholar 

  5. J. R. Davis, Elevated-temperature corrosion properties of superalloys, in Heat Resistant Materials (ASM International, 1997), p. 309.

  6. M. J. Donachie and S. J. Donachie, Corrosion and protection of superalloys, in Superalloys: A Technical Guide (ASM International, 2002), p. 287.

  7. N. S. Bornstein, The Journal of The Minerals Metals & Materials Society 48, 37 (1996).

    Article  CAS  Google Scholar 

  8. N. S. Bornstein and W. P. Allen, Materials Science Forum 197, 251 (1997).

    Google Scholar 

  9. Y. S. Zhang and R. A. Rapp, The Journal of The Minerals Metals & Materials Society 46, 47 (1994).

    Article  Google Scholar 

  10. C. G. Levi, J. W. Hutchinson, M. H. Vidal-Setif and C. A. Johnson, MRS Bulletin 37, 932 (2012).

    Article  CAS  Google Scholar 

  11. M. A. DeCrescente, Sulphidation and its inhibition in turbomachinery, in The Ninth Turbomachinery Symposium (1980), p. 63.

  12. M. A. DeCrescente and N. S. Bornstein, Corrosion 24, 127 (1968).

    Article  CAS  Google Scholar 

  13. B. S. Lutz, J. M. Alvarado-Orozco, L. Garcia-Fresnillo and G. H. Meier, Oxidation of Metals 88, 599 (2017).

    Article  CAS  Google Scholar 

  14. N. Otsuka and R. A. Rapp, Journal of the Electrochemical Society 137, 46 (1990).

    Article  CAS  Google Scholar 

  15. L. F. Aprigliano, Burner rig simulation of low temperature hot corrosion, Report No. MAT-77-68, D. W. Taylor Naval Ship Research and Development Center, 1977.

  16. K. L. Luthra, Metallurgical and Materials Transactions A 13A, 1843 (1982).

    Article  Google Scholar 

  17. K. L. Luthra, Metallurgical and Materials Transactions A 13A, 1853 (1982).

    Article  Google Scholar 

  18. K. L. Luthra and D. A. Shores, Journal of the Electrochemical Society 127, 2202 (1980).

    Article  CAS  Google Scholar 

  19. R. L. Jones, Cobalt oxide-SO2/SO3 reactions in cobalt-sodium mixed sulfate formation and low temperature hot corrosion, in High Temperature Corrosion, NACE-6, ed. R. A. Rap, (NACE Houston, 1983), p. 513.

  20. K. L. Luthra and J. H. Wood, Thin Solid Films 119, 271 (1984).

    Article  CAS  Google Scholar 

  21. K. L. Luthra, Journal of the Electrochemical Society 132, 1293 (1985).

    Article  CAS  Google Scholar 

  22. J. A. Goebel and F. S. Pettit, Metallurgical Transactions 1, 3421 (1970).

    Article  CAS  Google Scholar 

  23. J. A. Goebel, F. S. Pettit and G. W. Goward, Metallurgical Transactions 4, 261 (1973).

    Article  CAS  Google Scholar 

  24. R. A. Rapp and K. S. Goto, Hot corrosion of metals by molten salts, in The Second International Symposium on Molten Salts, eds. J. Braunstein and J. R. Selman (Electrochemical Society, Pennington, 1981), p. 81.

  25. R. L. Jones and S. T. Gadomski, Journal of the Electrochemical Society 124, 1641 (1977).

    Article  CAS  Google Scholar 

  26. K. T. Chiang, F. S. Pettit and G. H. Meier, Low temperature hot corrosion, in High Temperature Corrosion, NACE-6, ed. R. A. Rap (NACE Houston, 1983), p. 519.

  27. L. F. Aprigliano, Low- and high-temperature (1300 and 1650 F) burner rig tests of MCrAlY composition variations, Report No. DTNSRDC/SME-79/35, D.W. Taylor Naval Ship R&D Center, 1979.

  28. G. H. Meier and F. S. Pettit, Surface Coatings and Technology 39, 1 (1989).

    Article  Google Scholar 

  29. T. Gheno and B. Gleeson, Oxidation of Metals 87, 249 (2017).

    Article  CAS  Google Scholar 

  30. C. Leyens, I. G. Wright and B. A. Pint, Materials Science Forum 369–372, 571 (2001).

    Article  Google Scholar 

  31. T. Gheno, M. Z. Azar, A. H. Heuer and B. Gleeson, Corrosion Science 101, 2015 (32).

    Article  CAS  Google Scholar 

  32. K. L. Luthra, Mechanism of low temperature hot corrosion, in High Temperature Corrosion, NACE-6, ed. R. A. Rap (NACE Houston, 1983), p. 507.

  33. J. E. García-Herrera, J. M. Alvarado-Orozco, J. Muñoz-Saldaña, L. Garcia-Fresnillo and G. H. Meier, Oxidation of Metals 84, 233 (2015).

    Article  Google Scholar 

  34. J. M. Alvarado-Orozco, R. Morales-Estrella, M. S. Boldrick, J. L. Ortiz-Merino, D. G. Konitzer, G. Trápaga-Martínez and J. Muñoz-Saldaña, Oxidation of Metals 78, 269 (2012).

    Article  CAS  Google Scholar 

  35. D. M. Lipkin and D. R. Clarke, Oxidation of Metals 45, 267 (1996).

    Article  CAS  Google Scholar 

  36. K. L. Luthra, Metallurgical Transactions A 13A, 1647 (1982).

    Article  Google Scholar 

  37. Q. Wen, D. M. Lipkin and D. R. Clarke, Journal of American Ceramic Society 81, 3345 (1998).

    Article  CAS  Google Scholar 

  38. X. Peng, D. R. Clarke and F. Wang, Oxidation of Metals 60, 225 (2003).

    Article  CAS  Google Scholar 

  39. V. K. Tolpygo and D. R. Clarke, Material at High Temperatures 17, 59 (2000).

    Article  CAS  Google Scholar 

  40. S. P. Feofilov, A. B. Kulinkin and R. I. Zakharchenya, Journal of Luminescence 72–74, 41 (1997).

    Article  Google Scholar 

  41. Y. S. Hwang and R. A. Rapp, Journal of Electrochemical Society 137, 1276 (1990).

    Article  CAS  Google Scholar 

  42. L. Longa-Nava, Y. S. Zhang, M. Takemoto and R. A. Rapp, Corrosion Science 52, 680 (1996).

    Article  CAS  Google Scholar 

  43. B. S. Lutz, G. R. Holcomb and G. H. Meier, Oxidation of Metals 84, 353 (2015).

    Article  CAS  Google Scholar 

  44. N. Otsuka and R. A. Rapp, Journal of Electrochemical Society 137, 46 (1990).

    Article  CAS  Google Scholar 

  45. Y. S. Zhang, Journal of Electrochemical Society 133, 655 (1986).

    Article  CAS  Google Scholar 

  46. R. A. Rapp, Corrosion Science 44, 209 (2002).

    Article  CAS  Google Scholar 

  47. S. Hashimoto and A. Yamaguchi, Journal of Materials Research 14, 4667 (1999).

    Article  CAS  Google Scholar 

  48. X. Jin and L. Gao, Journal of American Ceramic Society 87, 533 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support for this work by the Office of Naval Research through Grant No. N00014-10-1-0661 (Dr. David A. Shifler, Technical Monitor).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. H. Meier.

Ethics declarations

Conflict of interest

The authors declare they have no conflict of interest.

Research Involving Human Participants and/or Animals and Informed Consent

There were no human participants or animals in this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alvarado-Orozco, J.M., Garcia-Herrera, J.E., Gleeson, B. et al. Reinterpretation of Type II Hot Corrosion of Co-Base Alloys Incorporating Synergistic Fluxing. Oxid Met 90, 527–553 (2018). https://doi.org/10.1007/s11085-018-9853-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-018-9853-6

Keywords

Navigation