Skip to main content
Log in

High-Temperature Oxidation Behavior of High-Aluminum (Co,Ni)-Based Superalloys for Friction Stir Welding (FSW) Tools

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The present investigation focuses on the thermal oxidation of two, Nb- and Ta-alloyed (Ni,Co)-based superalloys having in their microstructures high contents of hard phases and considered potential candidates as a tool for friction stir welding process. The alloys were produced by investment casting using high-purity elements in induction furnace under vacuum atmosphere. The alloys were oxidized pseudo-isothermally up to 1000 h in muffle furnace under laboratory air, and the mass change was monitored manually using an analytical balance. External oxidation products growing on the surface of the oxidized samples were mainly Cr2O3 and Al2O3. At 800 and 900 °C, internal oxidation products were also observed and consist of Al2O3 and AlN. From a kinetic point of view, both superalloys presented the same behavior at 800 and 900 °C with kp values typical of alumina formers. However, Ta-alloyed material exhibited superior oxidation resistance at 1000 °C when compared to the alloy containing Nb.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Adapted from [24]

Fig. 10

Similar content being viewed by others

References

  1. W. R. Longhurst, A. M. Strauss, G. E. Cook and P. A. Fleming, International Journal of Machine Tools and Manufacturing 51, 2010 (905).

    Google Scholar 

  2. H. J. Liu, J. C. Feng, H. Fujii and K. Nogi, International Journal of Machine Tools and Manufacturing 45, 2005 (1635).

    Article  Google Scholar 

  3. L. Shi, C. S. Wu and H. J. Liu, International Journal of Machine Tools and Manufacturing 91, 2015 (1).

    Article  Google Scholar 

  4. R. S. Mishra and Z. Y. Ma, Materials Science and Engineering R 50, 2014 (1–78).

    Article  Google Scholar 

  5. T. M. Polock, Nature Materials 15, 2016 (809).

    Article  Google Scholar 

  6. F. B. Ismail, V. A. Vorontsov, T. C. Lindley, M. C. Hardy, D. Dye and B. A. Shollock, Corrosion Science 116, 2017 (44–52).

    Article  CAS  Google Scholar 

  7. A. Suzuki, H. Inui and T. M. Pollock, Annual Review of Material Research 45, 2015 (345).

    Article  CAS  Google Scholar 

  8. A. M. S. Costa, J. P. Oliveira, M. V. Salgado, et al., Materials Science and Engineering A 730, 2018 (66).

    Article  CAS  Google Scholar 

  9. S. K. Makineni, A. Samanta, T. Rojhirunsakool, T. Alam, B. Nithin and A. K. Singh, Acta Materials 97, 2015 (29).

    Article  CAS  Google Scholar 

  10. S. K. Makineni, B. Nithin and K. Chattopadhyay, Scripta Materials 98, 2014 (36).

    Article  Google Scholar 

  11. S. K. Makineni, B. Nithin and K. Chattopadhyay, Acta Materials 85, 2015 (85).

    Article  CAS  Google Scholar 

  12. Y. Chen, C. Wan, J. Ruan, T. Omori, R. Kainuma and K. Ishida, Acta Materials 170, 2019 (62–74).

    Article  CAS  Google Scholar 

  13. I. Bantounas, B. Gwalani, T. Alam, R. Banerjee and D. Dye, Scripta Materials 63, 2019 (44–50).

    Article  Google Scholar 

  14. L. Klein, A. Bauer, S. Neumeier, M. Göken and S. Virtanen, Corrosion Science 53, 2011 (2027).

    Article  CAS  Google Scholar 

  15. L. Klein, Y. Shen, M. S. Killian and S. Virtanen, Corrosion Science 53, 2011 (2713).

    Article  CAS  Google Scholar 

  16. L. Klein, M. S. Killian and S. Virtanen, Corrosion Science 69, 2013 (43).

    Article  CAS  Google Scholar 

  17. H. Y. Yan, V. A. Vorontsov and D. Dye, Corrosion Science 83, 2014 (382).

    Article  CAS  Google Scholar 

  18. T. M. Pollock, J. Dibbern, M. Tsunekane, J. Zhu and A. Suzuki, JOM 62, 2010 (58).

    Article  CAS  Google Scholar 

  19. Q. Wang, Q. Yao, Y. Wang, Y. H. Zhu and T. Lu, Journal of Material Research 31, 2016 (3332).

    Article  CAS  Google Scholar 

  20. B. Yu, Y. Li, Y. Nie and H. Mei, Journal of Alloys Compound 765, 2018 (1148).

    Article  CAS  Google Scholar 

  21. M. V. Salgado, B. X. de Freitas, A. M. S. Costa, et al., Materials Today Communications 25, 2020 (101282).

    Article  CAS  Google Scholar 

  22. B. Pieraggi, Oxidation of Metals 27, 1987 (177).

    Article  CAS  Google Scholar 

  23. H. Hindam and D. P. Whittle, Oxidation of Metals 18, 1982 (245).

    Article  CAS  Google Scholar 

  24. B. Gleeson, Corrosion and Environmental Degradation of Materials, vol. II. Materials Science and Technology Series, M. Schütze (Ed.), Vol. 19 , Wiley-VCH, Weinheim, 2000, pp. 173–228.

  25. J. Chen, P. Rogers and J. A. Little, Oxidation of Metals 47, 1997 (381).

    Article  CAS  Google Scholar 

  26. A. Encinas-Oropesa, N. J. Simms, J. R. Nicholls, G. L. Drew, J. Leggett and M. C. Hardy, Materials of High Temperature 26, 2009 (241).

    Article  CAS  Google Scholar 

  27. G. A. Greene and C. C. Finfrock, Oxidation of Metals 55, 2001 (505).

    Article  CAS  Google Scholar 

  28. S. Cruchley, H. E. Evans, M. P. Taylor, M. C. Hardy and S. Stekovic, Corrosion Science 75, 2013 (58).

    Article  CAS  Google Scholar 

  29. S. Cruchley, M. P. Taylor, R. Ding, H. E. Evans, D. J. Child and M. C. Hardy, Comparison of chromia growth kinetics in a Ni-based superalloy with and without shot-peening. Corros. Sci. 100, 2015 (242–252).

    Article  CAS  Google Scholar 

  30. H. Josefsson, F. Liu, J.-E. Svensson, M. Halvarsson and L.-G. Johansson, Materials and Corrosion 56, 2005 (801).

    Article  CAS  Google Scholar 

  31. G. C. Rybicki and J. L. Smialek, Oxidation of Metals 31, 1989 (275).

    Article  CAS  Google Scholar 

  32. F. Zhong, F. Fan, S. Li and J. Sha, Progress in Natural Science Materials International 26, 2016 (600).

    Article  CAS  Google Scholar 

  33. D. Vojtěch, T. Popela, J. Kubásek, J. Maixner and P. Novák, Intermetallics 19, 2011 (493).

    Article  Google Scholar 

Download references

Acknowledgements

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Brasil (CAPES)—Finance Code 001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Chaia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva Salgado, M.V., Chaia, N., Rezende Silva, A.L.C. et al. High-Temperature Oxidation Behavior of High-Aluminum (Co,Ni)-Based Superalloys for Friction Stir Welding (FSW) Tools. Oxid Met 95, 203–220 (2021). https://doi.org/10.1007/s11085-020-10013-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-020-10013-8

Keywords

Navigation