Skip to main content
Log in

Fireside Corrosion of P92 Steel with Mixed Sulfate Deposit at 650 °C

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The fireside corrosion of a martensitic P92 steel with mixed sulfate deposit (Na2SO4/K2SO4 = 8:5, by weight) in the air at 650 °C was studied via X-ray diffraction, scanning electron microscope and electron probe microanalyzer and X-ray photoelectron spectroscopy. The results showed that P92 was highly susceptiblr to fireside corrosion attack. There were three corrosion layers: the Fe2O3 oxides in the outermost layer, the spinel oxides in the middle layer, and the mixed bands with oxide-sulfide between the inner oxide and the substrate. Sulfide particles were also distributed at the interface of martensitic lath in the matrix. There were different corrosion mechanisms in different corrosion layers. On the surface, basic fluxing of the oxide film destroyed the protective performance of the oxide film. At the forefront of the corrosion layer, the existence of sulfide and oxide mixed band and sulfide particles accelerated the mass transfer process and promoted the rapid oxidation of sulfide, making the oxidation rapidly penetrate the matrix. In nodular oxide, the formation of low melting point complex sulfate accelerated the mass transfer and oxidation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. IEA: World Energy Outlook 2019. https://www.iea.org/reports/world-energy-outlook-2019 (2019).

  2. B. S. Lutz, G. H. Meier, and G. R. Holcomb, Oxidation of Metals 84, 353 (2015).

    Article  CAS  Google Scholar 

  3. N. Otsuka, Reference Module in Materials Science and Materials Engineering, Fireside Corrosion, Shreir’s Corrosion 1st ed. (Elsevier, Amsterdan, 2010), p. 457.

  4. R. J. Bishop, Journal of the Institute of Fuel, 41, 51 (1968).

  5. N. S. Bornstein and M. A. Decrescente, Metallurgical and Materials Transactions B, 2, 2875 (1971).

    Article  CAS  Google Scholar 

  6. N. S. Bornstein and M. A. Decrescente, Corrosion 26, 309 (1970).

    Article  Google Scholar 

  7. J. A. Goebel and F. S. Pettit, Metallurgical Transactions 1, 1943 (1970).

  8. J. A. Goebel, F. S. Pettit, and G. W. Goward, Metallurgical Transactions 4, 261 (1973).

    Article  CAS  Google Scholar 

  9. K. L. Luthra and D. A. Shores, Journal of the Electrochemical Society, 127, 2202 (1980).

    Article  CAS  Google Scholar 

  10. L. Shi, Y. Zhang, and S. Shih, Corrosion Science 33, 1427 (1992).

  11. L. Shi, Y. Zhang, and S. Shih, Oxidation of Metals 38, 385 (1992).

    Article  CAS  Google Scholar 

  12. N. Saini, C. Pandey, and M. M. Mahapatra, Journal of Materials Engineering & Performance 26, 5414 (2017).

  13. N. Otsuka, Oxidation of Metals 80, 565 (2013).

    Article  CAS  Google Scholar 

  14. G. R. Holcomb, J. Tylczak, G. H. Meier, and B. S. Lutz, Oxidation of Metals 80, 599 (2013).

  15. G. Stein-Brzozowska, J. R. Maier, G. Scheffknecht, D. Cumbo, S. Masci, E. Tosi, G. Corraggio, M. Faleni, and L. Biasci, Energy Procedia 37, 1448 (2013).

    Article  CAS  Google Scholar 

  16. T. Hussain, A. U. Syed, and N. J. Simms, Oxidation of Metals 80, 529 (2013).

    Article  CAS  Google Scholar 

  17. R. Abang, A. Lisk, and H. J. Krautz, Energy Procedia 40, 304 (2013).

  18. A. U. Syed, N. J. Simms, and J. E. Oakey, Fuel 101, 62 (2012).

    Article  CAS  Google Scholar 

  19. T. Hussain, A. U. Syed, and N. J. Simms, Fuel 113, 787 (2013).

    Article  CAS  Google Scholar 

  20. A. G. Belobaba, A. I. Masliy, A. A. Gusev, A. A. Tikhomirov, and Y. A. Kudenko, Chemistry for Sustainable Development, 21, 275 (2013).

  21. N. Yabuuchi, H. Yoshida, and S. Komaba, Electrochemistry 80, 716 (2012).

    Article  CAS  Google Scholar 

  22. B. P. Payne, M. C. Biesinger, and N. S. McIntyre, Journal of Electron Spectroscopy and Related Phenomena, 184, 29 (2011).

    Article  CAS  Google Scholar 

  23. X. Cheng, Z. Feng, C. Li, C. Dong, and X. Li, Electrochimica Acta 56, 5860 (2011).

    Article  CAS  Google Scholar 

  24. R. An, G. Xu, C. Chang, J. Bai, and S. Fang, Journal of Energy Chemistry 26, 556 (2017).

    Article  Google Scholar 

  25. E. Gardin, S. Zanna, A. Seyeux, A. Allion-Maurer, and P. Marcus, Corrosion Science 155, 121 (2019).

    Article  CAS  Google Scholar 

  26. J. Fan, L. Gu, D. Wu, and Z. Liu, Chemical Engineering Journal 333, 657 (2018).

    Article  CAS  Google Scholar 

  27. F. Pettit, Oxidation of Metals 76, 1 (2011).

    Article  CAS  Google Scholar 

  28. S. Liangquan, Corrosion Science 37, 1281 (1995).

  29. S. Soltanattar, High Temperature Corrosion Behavior of Alloys in Mixed-Gas Environments, Doctoral (University of Pittsburgh, Pennsylvania, 2018).

  30. O. U. Xue-Mei, S. Zhi, S. Min, and D. L. Zou, Mining Science and Technology 18, 444 (2008).

    Google Scholar 

  31. M. Mobin and S. K. Hasan, Journal of Materials Environmental Science 3, 109 (2012).

    CAS  Google Scholar 

  32. K. H. Stern, M. L. Deanhardt, and R. Panayappan, Journal of Physical Chemistry 83, 2848 (1979).

    Article  CAS  Google Scholar 

  33. P. Knutsson, H. Lai, and K. Stiller, Corrosion Science 73, 230 (2013).

    Article  CAS  Google Scholar 

  34. T. Narita, W. W. Smeltzer, and K. Nishida, Oxidation of Metals 17, 299 (1982).

    Article  CAS  Google Scholar 

  35. T. Narita, and T. Ishikawa, Materials Science and Engineering, 87, 51–61 (1987)

  36. T. Dudziak, T. Hussain, and N. J. Simms, Journal of Materials Engineering & Performance 26, 84 (2016).

    Article  Google Scholar 

  37. D. Young, High Temperature Oxidation and Corrosion of Metals, 2nd ed. (Elsevier, Amsterdam, 2008).

Download references

Acknowledgements

The authors acknowledge the financial support for the present work from Beijing Municipal Science & Technology Commission (Z181100005218005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. H. Lu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shang, C.G., Xin, L., Xu, Q.L. et al. Fireside Corrosion of P92 Steel with Mixed Sulfate Deposit at 650 °C. Oxid Met 94, 323–341 (2020). https://doi.org/10.1007/s11085-020-09994-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-020-09994-3

Keywords

Navigation