Skip to main content
Log in

Comparative Isothermal Oxidation Resistance of Selected Single-Crystal Ni-Based Superalloys With and Without Pt-Modified Surface Layers

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Isothermal oxidation tests at 1150 °C show that the commercial grade of the single-crystal Ni-based superalloy CMSX-4 is superior to that of the CMSX-10 version. Superalloy CMSX-4 is observed to undergo a shorter stage of transient oxidation and to be able to form more protective oxides during the earlier stages of the reaction as compared to superalloy CMSX-10. This behavior is correlated with the difference in chemical composition between the two superalloys. A significant improvement in oxidation resistance of both superalloys is realized after diffusing a 10 μm thick layer of Pt into their surfaces to produce a Pt-rich surface layer of γ′-phase. However, the oxidation resistance of the composite Pt/CMSX-10 system becomes superior to that of the Pt/CMSX-4 system. Most evidence indicates that this is a reflection of the higher microstructural stability of the γ′-phase in superalloy CMSX-10 and the added beneficial effect provided by Pt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. R. Daroli, International Materials Reviews64, 355 (2019).

    Article  CAS  Google Scholar 

  2. M. Perrut, P. Caron, M. Thomas and A. Couret, Comptes Rendus Physique19, 657 (2018).

    Article  CAS  Google Scholar 

  3. A. F. Giamei, Advanced Materials and Processes39, 26 (2013).

    Google Scholar 

  4. T. M. Pollock and S. Tin, Journal of Propulsion and Power22, 361 (2006).

    Article  CAS  Google Scholar 

  5. P. Caron and T. Khan, Aerospace Science and Technology3, 513 (1999).

    Article  Google Scholar 

  6. R. W. Broomfield, D. A. Ford, H. K. Bhangu, M. C. Thomas, D. J. Frasier, P. S. Burkholder, K. H. Gary, L. Erickson and J. B. Wahl, ASME Transactions: Journal of Engineering for Gas Turbines and Power120, 595 (1998).

    Article  CAS  Google Scholar 

  7. H. M. Tawancy, N. M. Abbas, A. I. Al-Mana and T. N. Rhys-Jones, Journal of Materials Science29, 2445 (1994).

    Article  CAS  Google Scholar 

  8. M. Gell, D. N. Duhl and A. F. Giamei, The development of single-crystal superalloy blades. in Superalloys 80, Proceedings of the Fourth International Symposium on Superalloys, eds. J. K. Tien, S. W. Wlodek, H. Morrow, M. Gell and G. E. Maurer (ASM, Metals Park, Ohio, 1980), p. 205.

    Google Scholar 

  9. G. L. Erickson, The development and application of CMSX-10. in Superalloys 1996, eds. A. D. Kissinger, D. J. Deye, D. L. Anton, A. D. Cetel, M. V. Nathal, T. M. Pollock and D. A. Woodford (The Minerals, Metals and Materials Society, Pittsburgh, Pennsylvania, 1996), p. 35.

    Google Scholar 

  10. A. Sato, H. Harada, T. Yokokawa, T. Murakumo, Y. Koizumi, T. Kobayashi and H. Imai, Scripta Materialia54, 1679 (2006).

    Article  CAS  Google Scholar 

  11. Y. Koizumi, T. Kobayashi, T. Yokokawa, Z. Jianxin, M. Osawa, H. Harada, Y. Aoki and M. Arai, Development of next-generation Ni-base single crystal superalloys. in Superalloys 2004, eds. K. A. Green, T. M. Pollock, H. Harada, T. E. Howson, R. C. Reed, J. J. Schirra and S. Walston (The Minerals, Metals and Materials Society, Pittsburgh, Pennsylvania, 2004), p. 35.

    Chapter  Google Scholar 

  12. N. V. Petrushin, E. S. Elyutin, E. M. Visik and S. A. Golynets, Russian Metallurgy2017, 936 (2017).

    Article  Google Scholar 

  13. A. Sato, A. C. Yeh, T. Kobayashi, T. Yokokawa, H. Harada, T. Murakumo and J. X. Zhang, Energy Materials2, 19 (2007).

    Article  CAS  Google Scholar 

  14. K. Kawagishi, A. C. Yeh, T.Yokokawa, T. Kobayashi, Y. Koizumi and H. Harada, Development of an oxidation-resistant high-strength sixth generation single-crystal superalloy TMS-238. in Superalloy 2012, 12th International Symposium on Superalloys, eds. E. S. Huron, R. C. Reed, M. C. Hardy, M. J. Mills, R. E. Montero, P. D. Portella and J. Teleman (The Minerals, Metals and Materials Society, Pittsburgh, Pennsylvania, 2012), p. 189.

    Chapter  Google Scholar 

  15. L. Xu, S. Bo, Y. Hongde and W. Lei, Procedia Engineering99, 1482 (2015).

    Article  Google Scholar 

  16. K. P. L. Fullagar, R. W. Broomfield, M. Hulands, K. Harris, G. L. Erikson and S. L. Sikkenga, Transactions of ASME-Journal of Engineering for Gas Turbines and Power118, 380 (1996).

    Article  Google Scholar 

  17. C. M. Younes, G. C. Allen and J. A. Nicholson, Corrosion Engineering Science and Technology42, 80 (2007).

    Article  CAS  Google Scholar 

  18. A. Akhtar, M. S. Hook and R. C. Reed, Metallurgical and Materials Transactions A36A, 3001 (2005).

    Article  CAS  Google Scholar 

  19. D. K. Das, Progress in Materials Science85, 151 (2013).

    Article  CAS  Google Scholar 

  20. J. A. Haynes, B. A. Pint, Y. Zhang and I. G. Wright, Surface and Coatings Technology204, 816 (2009).

    Article  CAS  Google Scholar 

  21. J. A. Haynes, B. A. Pint, Y. Zhang and I. G. Wright, Surface and Coatings Technology203, 413 (2008).

    Article  CAS  Google Scholar 

  22. Y. Zhang, J. P. Stacy, B. A. Pint, J. A. Haynes, B. T. Hazel and B. A. Nagaraj, Surface and Coatings Technology203, 417 (2008).

    Article  CAS  Google Scholar 

  23. B. Gleeson, N. Mu and S. Hayashi, Journal of Materials Science44, 1704 (2009).

    Article  CAS  Google Scholar 

  24. H. M. Tawancy, Metallography, Microstructure and Analysis6, 315 (2017).

    Article  CAS  Google Scholar 

  25. H. M. Tawancy, Surface coatings and technology49, 1 (1991).

    Article  CAS  Google Scholar 

  26. C. R. K. Rao and D. C. Triverdi, Coordination Chemical Reviews249, 613 (2005).

    Article  CAS  Google Scholar 

  27. P. J. Goodhew, Specimen Preparation for Transmission Electron Microscopy of Materials, (Oxford University Press, Oxford, 1984), p. 21.

    Google Scholar 

  28. M. Huang and J. Zhu, Rare Metals35, 127 (2016).

    Article  CAS  Google Scholar 

  29. A. Mottura and R. C. Reed, MATEC Web of Conferences 14, Article No. 01001 (2014). http://dx.doi.org/10.1051/matecconf/20141401001.

  30. A. F. Giamei and D. L. Anton, Metallurgical Transactions A16A, 1997 (1985).

    Article  CAS  Google Scholar 

  31. Z. Shi, S. Liu, X. Wang and J. Li, Transactions of Nonferrous Metals Society of China25, 776 (2015).

    Article  CAS  Google Scholar 

  32. L. A. Cornish, R. Suss, A. Watson and S. N. Prins, Platinum Metals Reviews51, 2007 (104).

    Article  CAS  Google Scholar 

  33. H. M. Tawancy, N. Sridhar, N. M. Abbas and D. S. Rickerby, Scripta Metallurgica et Materialia33, 1995 (1431).

    Article  CAS  Google Scholar 

  34. H. M. Tawancy, N. Sridhar, B. S. Tawabini, N. M. Abbas and T. N. Rhys-Jones, Journal of Materials Science27, 1992 (6463).

    Article  CAS  Google Scholar 

  35. J. L. Smialek and G. H. Meier, High temperature oxidation. in Superalloys II, eds. C. T. Sims, N. S. Stoloff and W. C. Hagel (Wiley, New York, 1987), p. 293.

    Google Scholar 

  36. M. Levy, P. Farrell and F. Pettit, Corrosion-NACE42, 1986 (708).

    Article  CAS  Google Scholar 

  37. J. X. Chang, D. Wang, X. G. Liu, L. H. Lou and J. Zhang, Metallurgical and Materials Transactions A49A, 2018 (4343).

    Article  CAS  Google Scholar 

  38. K. Kawagishi, H. Harada, A. Sato and T. Kobayashi, JOM58, 2006 (43).

    Article  CAS  Google Scholar 

  39. H. M. Tawancy, Oxidation of Metals84, 2015 (491).

    Article  CAS  Google Scholar 

  40. A. V. Put, D. Oquab, E. Pere, A. Raffaitin and D. Monceu, Oxidation of Metals75, 2011 (247).

    Article  CAS  Google Scholar 

  41. H. M. Tawancy and L. M. Al-Hdhrami, Transactions of ASME-Journal of Engineering for Gas Turbines and Power, 133, Article No. 042101 (2011).

  42. H. M. Tawancy, Oxidation of Metals86, 2016 (371).

    Article  CAS  Google Scholar 

  43. M. W. Brumm and H. J. Grabke, Corrosion Science33, 1992 (1677).

    Article  CAS  Google Scholar 

  44. T. A. Ramanarayanan, R. Ayer, R. Petkovic-Luton and D. P. Leta, Oxidation of Metals29, 1988 (445).

    Article  CAS  Google Scholar 

  45. H. Hindam and D. P. Whittle, Oxidation of Metals18, 1982 (245).

    Article  CAS  Google Scholar 

  46. J. D. Kuenzly and D. L. Douglass, Oxidation of Metals8, 1974 (139).

    Article  CAS  Google Scholar 

  47. A. Kumar, M. Nasrallah and D. L. Douglass, Oxidation of Metals8, 1974 (227).

    Article  CAS  Google Scholar 

  48. H. M. Tawancy, Journal of Materials Engineering and Performance28, 2019 (4998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

It is a pleasure to acknowledge the continued support provided by King Fahd University of Petroleum and Minerals as well as the Center for Engineering Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. M. Tawancy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tawancy, H.M. Comparative Isothermal Oxidation Resistance of Selected Single-Crystal Ni-Based Superalloys With and Without Pt-Modified Surface Layers. Oxid Met 93, 371–386 (2020). https://doi.org/10.1007/s11085-020-09960-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-020-09960-z

Keywords

Navigation