Skip to main content
Log in

Thermal stability of advanced Ni-base superalloys

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Exposures consisting of 1 to 900 h at 1000 and 1100 °C after an ageing treatment of 16 h at 870 °C were used to study the thermal stability of selected γ′-strengthened Ni-based superalloys representing conventional, directional solidification, and single-crystal castings. Various techniques of microscopy, spectroscopy and diffraction were used to characterize the microstructure. Primary MC carbides in the alloys studied were found to be stable toward decomposition into lower carbides. In the aged condition, the strengthening γ′ phase assumed a cuboidal morphology; however, all alloys also contained varying proportions of coarse lamellar γ′ and hyperfine cooling γ′. On an atomic scale, the nature of the cuboidal γ′-matrix interface was found to vary from coherent to partially coherent. However, the overall lattice mismatch varied from one alloy to another depending upon its composition and the distribution of various elements in carbide phases and lamellar γ′ phase. Directional growth of the cuboidal γ′ phase upon exposure to higher temperatures was found to be accelerated by a large initial lattice mismatch leading to a considerable loss of coherency, as indicated by the observation of dislocation networks around the γ′ particles. Although the composition of the γ′ phase remained essentially unchanged, there was a marked change in matrix composition. Sigma phase was found to precipitate in all alloys, but its thermal stability was a function of alloy composition. The initial decrease in hardness followed by a hardening effect during exposure could be explained in terms of the partial dissolution of the γ′ phase and precipitation of sigma phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. S. Stoloff and C. T. Sims, in “Superalloys II”, edited by C. T. Sims, N. S. Stoloff and W. C. Hagel (Wiley, New York, 1987) p. 519.

    Google Scholar 

  2. C. T. Sims, Advanced Mater. Process. 139 (6) (1991) 32.

    CAS  Google Scholar 

  3. W. J. Molloy, ibid. 138 (4) (1990) 23.

    Google Scholar 

  4. C. H. White, P. M. Williams and M. Morley, ibid. 137 (4) (1990) 53.

    Google Scholar 

  5. G. K. Bouse and J. R. Mihalisin, in “Superalloys, Supercomposites and Superceramics”, edited by J. K. Tien and T. Caulfleld (Academic, New York, 1989) p. 99.

    Chapter  Google Scholar 

  6. D. Driver, “Materials at their Limit” (Institute of Metals, London, 1986) p. 519.

    Google Scholar 

  7. D. N. Duhl, in “Superalloys II”, edited by C. T. Sims, N. S. Stoloff and W. C. Hagel (Wiley, New York, 1987) p. 189.

    Google Scholar 

  8. Idem and T. Caulfleld (Academic, New York, 1989) p. 149.

    Chapter  Google Scholar 

  9. B. H. Kear and D. P. Pope, ibid.“ p. 545.

    Chapter  Google Scholar 

  10. B. H. Kear and E. R. Thompson, Science 208 (1980) 847.

    Article  CAS  Google Scholar 

  11. N. S. Stoloff, Int. Met. Rev. 34 (4) (1989) 153.

    Article  CAS  Google Scholar 

  12. D. P. Pope and S. S. Ezz, ibid. 29 (3) (1984) 136.

    CAS  Google Scholar 

  13. A. K. Singh, N. Louat and K. Sadanada, Met. Trans. 19A (1988) 2965.

    Article  CAS  Google Scholar 

  14. G. M. Janowski, B. S. Harwon and B. J. Pletka, ibid. 18A (1987) 1341.

    Article  CAS  Google Scholar 

  15. V. Nathal and E. J. Ebert, ibid. 16A (1985) 1849.

    Article  CAS  Google Scholar 

  16. H. E. Collins, ibid. 5 (1974) 189.

    CAS  Google Scholar 

  17. E. H. Van Der Molen, J. M. Oblak and O. H. Kriege, ibid. 2 (1971) 1627.

    Google Scholar 

  18. H. E. Collins, Trans. ASM 62 (1969) 82.

    CAS  Google Scholar 

  19. H. E. Collins and R. J. Quigg, ibid. 61 (1968) 139.

    CAS  Google Scholar 

  20. T. Link and M. Feller-Kniepmeier, ibid. 23A (1992) 99.

    CAS  Google Scholar 

  21. J. H. Zhang, Z. Q. Hu, Y. B. Xu and Z. G. Wang, ibid. 23A (1992) 1253.

    CAS  Google Scholar 

  22. E. W. Ross and C. T. Sims, in “Superalloys II”, edited by C. T. Sims, N. S. Stoloff and W. C. Hagel (Wiley, New York, 1987) p. 97.

    Google Scholar 

  23. S. T. Wlodek, Trans. ASM 57 (1964) 110.

    CAS  Google Scholar 

  24. C. Hammond and J. Nutting, Met. Sci. J. 11 (1977) 474.

    Article  CAS  Google Scholar 

  25. R. L. Dreshfield, J. Met. 39 (7) (1987) 16.

    CAS  Google Scholar 

  26. E. E. Underwood, in “Metallography, Structure and Phase Diagrams”, Metals Handbook, Vol. 8, 8th Edn (ASM, Metals Park, Ohio, 1973) p. 37.

    Google Scholar 

  27. S. Floreen, in “Superalloys II”, edited by C. T. Sims, N. S. Stoloff and W. C. Hagel (Wiley, New York, 1987) p. 241.

    Google Scholar 

  28. R. G. Davies and T. L. Johnston, in “Ordered Alloys: Structural Applications and Physical Metallurgy”, edited by B. H. Kear, C. T. Sims, N. S. Stoloff and J. H. Westbrook (Claitor's Publishing Division, Baton Rouge, Louisiana, 1970) p. 447.

    Google Scholar 

  29. B. H. Kear, in “Order-Disorder Transformation in Alloys”, edited by H. Warlimont (Springer, New York, 1974) p. 440.

    Chapter  Google Scholar 

  30. B. R. Clark and F. B. Pickering, J. Iron Steel Inst. 205 (1967) 70.

    CAS  Google Scholar 

  31. B. A. Parker and D. R. F. West, J. Austral. Inst. Metals 14 (1969) 102.

    CAS  Google Scholar 

  32. J. Heslop, Cobalt 24 (1964) 1.

    Google Scholar 

  33. C. H. White, in “The Nimonic Alloys”, edited by W. Betteridge and J. Heslop (Crane, Russak Co., New York, 1974) p. 63.1.

    Google Scholar 

  34. P. Hirsch, A. Howie, R. B. Nicholson, D. W. Pashley and M. J. Whelan, “Electron Microscopy of Thin Crystals” (Krieger, Huntington, New York, 1977) p. 317.

    Google Scholar 

  35. G. Wallwork and J. Croll, in “Review of High Temperature Materials”, Vol. III, No. 2, edited by J. B. Newkirk (Freund, Tel Aviv, Israel, 1976) p. 89.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tawancy, H.M., Abbas, N.M., Al-Mana, A.I. et al. Thermal stability of advanced Ni-base superalloys. JOURNAL OF MATERIALS SCIENCE 29, 2445–2458 (1994). https://doi.org/10.1007/BF00363439

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00363439

Keywords

Navigation