Skip to main content
Log in

Cyclic Oxidation Behaviors of TiAl–Nb–Si-Based Alloys

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

For this study, several TiAl–Nb–Si-based alloys were designed for a ductility improvement, whereby the high-temperature strength and oxidation resistance were not sacrificed. The environmental properties under the cyclic oxidation behaviors of the TiAl alloys were evaluated at 900 °C for up to 360 cycles. The compositions of the as-cast alloys determined their microstructures, and the cyclic oxidation behavior of the selected alloy was relatively comparable to that of a commercial TiAl alloy that is currently used in automotive engines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Y.-W. Kim, JOM 41, (7), 24 (1989).

    Article  Google Scholar 

  2. Z. Tang, F. Wang and W. Wu, Surface & Coatings Technology 99, 248 (1998).

    Article  Google Scholar 

  3. R. Braun, M. Fröhlich, C. Leyens and D. Renusch, Oxidation of Metals 71, 295 (2009).

    Article  Google Scholar 

  4. V. Gauthier, F. Dettenwanger and M. Schütze, Intermetallics 10, 667 (2002).

    Article  Google Scholar 

  5. V. A. C. Haanappel, H. Clemens and M. F. Stroosnijder, Intermetallics 10, 293 (2002).

    Article  Google Scholar 

  6. C. Leynes, M. Peters and W. A. Kaysser, Advanced Engineering Materials 2, (5), 265 (2000).

    Article  Google Scholar 

  7. H. Clemens, A. Lorich, N. Eberhardt, W. Glatz, W. Knabl and H. Kestler, Metallkde 90, 569 (1999).

    Google Scholar 

  8. S. C. Huang and J. C. Chesnutt, in JH Westbrook, vol. 2, ed. R. L. Fleischer (Wiley, Chichester, 1995), p. 73.

    Google Scholar 

  9. H. Saari, S. Bulmer, D. Y. Seo, P. Au, Microstructures and creep properties of powder metallurgy Ti-48Al-2Cr-2Nb+ W, Proceeding from ASME Turbo Expo 2007: Power for Land, Sea, and Air, (2007).

  10. S. Azad, R. K. Mandal and A. K. Singh, Materials Science and Engineering A 429, 219 (2006).

    Article  Google Scholar 

  11. S. Bulmer, The Microstructures and mechanical properties of powder metallurgy (PM) Ti-48Al-2Cr-2Nb-(0-1) W, M. A. Sc. thesis, Carleton University, Canada, (2008).

  12. X. J. Xu, J. P. Lin, Y. L. Wang, J. F. Gao, Z. Lin and G. L. Chen, Alloys and Compounds 414, 175 (2006).

    Article  Google Scholar 

  13. F. Appel, U. Brossmann, U. Christoph, S. Eggert, P. Janschek, U. Lorenz, J. Müllauer, M. Oehring and J. D. H. Paul, Advanced Engineering Materials 2, (11), 699 (2000).

    Article  Google Scholar 

  14. X. Wu, Intermetallics 14, 1114 (2006).

    Article  Google Scholar 

  15. R. Gerling, H. Clemens and F. P. Schimansky, Advanced Engineering Materials 6, (1–2), 23 (2004).

    Article  Google Scholar 

  16. F. Appel, U. Brossmann, U. Christoph, S. Eggert, P. Janschek, U. Lorenz, J. Müllauer, M. Oehring and J. D. H. Paul, Advanced Engineering Materials 2, (11), 699 (2000).

    Article  Google Scholar 

  17. Y. -W. Kim, Advances in Gamma Alloy Technology, Presented at ASM/TMS Spring Symposium, Niskayuna, (2005).

  18. F. H. Froes and C. Suryanarayana, in Titanium aluminides in physical metallurgy and processing of intermetallic compounds, eds. N. S. Stoloff and V. K. Sikka (Chapman & Hall, New York, 1996), p. 297.

    Chapter  Google Scholar 

  19. D. Y. Seo, H. Saari, P. Au and J. Beddoes, Materials Science Forum 539–543, 1543 (2007).

    Article  Google Scholar 

  20. D. J. Kim, D. Y. Seo, X. Huang, T. Sawatzky, H. Saari, J. K. Hong and Y.-W. Kim, International Materials Reviews 59, (6), 297 (2014).

    Google Scholar 

  21. M. P. Brady, JOM 48, 46 (1996).

    Article  Google Scholar 

  22. F. Dettenwanger, E. Schumann, M. Rühle, J. Rakowski and G. H. Meier, Oxidation of Metals 50, 269 (1998).

    Article  Google Scholar 

  23. D. J. Kim, D. Y. Seo, Q. Yang, H. Saari, T. Sawatzky and Y.-W. Kim, Canadian Metallurgical Quarterly 50, (4), 416 (2011).

    Article  Google Scholar 

  24. D. J. Kim, D. Y. Seo, H. Saari, T. Sawatzky and Y.-W. Kim, Intermetallics 19, 1509 (2011).

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) that is funded by the Ministry of Science, ICT & Future Planning (NRF-2015R1C1A1A02036455).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JaeKeun Hong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, D., Seo, D., Kim, SW. et al. Cyclic Oxidation Behaviors of TiAl–Nb–Si-Based Alloys. Oxid Met 86, 417–430 (2016). https://doi.org/10.1007/s11085-016-9644-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-016-9644-x

Keywords

Navigation