Skip to main content
Log in

Oxidation Behaviour of TBC Systems on γ-TiAl Based Alloy Ti–45Al–8Nb

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The lifetime of thermal barrier coating (TBC) systems on gamma titanium aluminides was determined in the temperature range between 850 °C and 950 °C under cyclic oxidation conditions in air. Coupons of the alloy Ti–45Al–8Nb (at.%) were coated by pack aluminizing. A subset of samples was subsequently annealed at 910 °C for 312 h in argon. During this heat treatment, the two-phase (Nb,Ti)Al3 plus TiAl2 microstructure of the coating transformed into single phase γ-TiAl. On pre-oxidised aluminized, annealed and bare samples, TBCs of yttria partially stabilized zirconia were deposited using electron-beam physical vapour deposition (EB-PVD). No spallation of the TBCs was observed in cyclic oxidation tests at 850 °C for up to 3,000 cycles of 1 h dwell time at high temperature. The two-phase aluminide coating provided effective oxidation protection due to the formation of a continuous alumina scale. The lifetime of this TBC system exceeded 1,400 cycles at 950 °C, whereas an aluminized and annealed sample failed after approximately 500 cycles. The TBC on bare substrate failed when thermally cycled at 900 °C. In contrast, no spallation occurred with an aluminized and annealed specimen at this temperature during the maximum exposure length of 1,000 cycles, probably related to an increased aluminium concentration in the subsurface region. EB-PVD zirconia top coats were well adherent to the alumina scale and the thermally grown mixed oxides. Failure of the TBC systems observed with bare and annealed samples was associated with spalled oxide scales formed on γ-TiAl.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. D. M. Dimiduk, Materials Science and Engineering A 263, 281 (1999).

    Article  Google Scholar 

  2. H. Clemens and H. Kestler, Advanced Engineering Materials 2, 551 (2000).

    Article  CAS  Google Scholar 

  3. W. Smarsly, H. Baur, G. Glitz, H. Clemens, T. Khan, and M. Thomas, in Structural Intermetallics 2001, eds. K. J. Hemker et al. (The Minerals, Metals & Materials Society, Warrendale, 2001), p. 25.

  4. T. Tetsui, Materials Science and Engineering A 329–331, 582 (2002).

    Article  Google Scholar 

  5. H. Baur, D. B. Wortberg, and H. Clemens, in Gamma Titanium Aluminides 2003, eds. Y.-W. Kim, H. Clemens, and A. H. Rosenberger (The Minerals, Metals & Materials Society, Warrendale, 2003), p. 23.

  6. E. A. Loria, Intermetallics 9, 997 (2001).

    Article  CAS  Google Scholar 

  7. D. Roth-Fagaraseanu and F. Appel, in Ti-2003, Science and Technology, eds. G. Lütjering and J. Albrecht (WILEY-VCH Verlag GmbH, Weinheim, 2004), p. 2899.

  8. X. Wu, Intermetallics 14, 1114 (2006).

    Article  CAS  Google Scholar 

  9. F. Appel, J. D. H. Paul, M. Oehring, C. Buque, C. Klinkenberg, and T. Carneiro, in Niobium for High Temperature Applications, eds. Y.-W. Kim and T. Carneiro (The Minerals, Metals & Materials Society, Warrendale, 2004), p. 139.

  10. M. Yoshihara and Y.-W. Kim, Intermetallics 13, 952 (2005).

    Article  CAS  Google Scholar 

  11. R. M. Imayev, V. M. Imayev, M. Oehring, and F. Appel, Intermetallics 15, 451 (2007).

    Article  CAS  Google Scholar 

  12. M. P. Brady, B. A. Pint, P. F. Tortorelli, and I. G. Wright, in Corrosion and Environmental Degradation, ed. M. Schütze, Vol. II (WILEY-VCH, Weinheim, 2000), p. 229.

  13. Y. Shida and H. Anada, Oxidation of Metals 45, 197 (1996).

    Article  CAS  Google Scholar 

  14. T. Carneiro and Y.-W. Kim, Intermetallics 13, 1000 (2005).

    Article  CAS  Google Scholar 

  15. M. P. Brady, B. Gleeson, and I. G. Wright, Journal of Metals 52, 16 (2000).

    CAS  Google Scholar 

  16. L. Singheiser, L. Niewolak, U. Flesch, V. Shemet, and W. J. Quadakkers, Metallurgical and Materials Transactions A 34A, 2247 (2003).

    Article  CAS  ADS  Google Scholar 

  17. C. Leyens, R. Braun, M. Fröhlich, and P. Eh. Hovsepian, Journal of Metals 58, 17 (2006).

    CAS  Google Scholar 

  18. G. S. Fox-Rabinovich, D. S. Wilkinson, S. C. Veldhuis, G. K. Dosbaeva, and G. C. Weatherly, Intermetallics 14, 189 (2006).

    Article  CAS  Google Scholar 

  19. R. Mevrel, C. Duret, and R. Pichoir, Materials Science and Technology 2, 201 (1986).

    CAS  Google Scholar 

  20. T. C. Munro and B. Gleeson, Metallurgical and Materials Transactions A 27A, 3761 (1996).

    Article  ADS  CAS  Google Scholar 

  21. H. G. Jung and K. Y. Kim, Oxidation of Metals 58, 197 (2002).

    Article  CAS  Google Scholar 

  22. Z. D. Xiang, S. R. Rose, and P. K. Datta, Surface Engineering 18, 373 (2002).

    Article  CAS  Google Scholar 

  23. V. Gauthier, F. Dettenwanger, M. Schütze, V. Shemet, and W. J. Quadakkers, Oxidation of Metals 59, 233 (2003).

    Article  CAS  Google Scholar 

  24. J. L. Smialek, Corrosion Science 35, 1199 (1993).

    Article  CAS  Google Scholar 

  25. C. Zhou, H. Xu, and K. Y. Kim, Metallurgical and Materials Transaction A 31A, 2391 (2000).

    Article  CAS  Google Scholar 

  26. Z. Liu and G. Wang, Materials Science and Engineering A 397, 50 (2005).

    Article  CAS  Google Scholar 

  27. M. S. Chu and S. K. Wu, Acta Materialia 51, 3109 (2003).

    Article  CAS  Google Scholar 

  28. M. S. Chu and S. K. Wu, Oxidation of Metals 63, 1 (2005).

    Article  CAS  Google Scholar 

  29. M. Fröhlich, A. Ebach-Stahl, R. Braun, and C. Leyens, Materialwissenschaft und Werkstofftechnik 38, 667 (2007).

    Article  CAS  Google Scholar 

  30. N. P. Padture, M. Gell, and E. H. Jordan, Science 296, 280 (2002).

    Article  PubMed  ADS  CAS  Google Scholar 

  31. M. J. Stiger, N. M. Yanar, M. G. Topping, F. S. Pettit, and G. H. Meier, Zeitschrift für Metallkunde 90, 1069 (1999).

    CAS  Google Scholar 

  32. C. Leyens, U. Schulz, K. Fritscher, M. Bartsch, M. Peters, and W. A. Kaysser, Zeitschrift für Metallkunde 92, 762 (2001).

    CAS  Google Scholar 

  33. U. Schulz, et al., Aerospace Science and Technology 7, 73 (2003).

    Article  CAS  Google Scholar 

  34. C. G. Levi, Current Opinion in Solid State and Materials Science 8, 77 (2004).

    Article  CAS  Google Scholar 

  35. M. Peters, K. Fritscher, G. Staniek, W. A. Kaysser, and U. Schulz, Materialwissenschaft und Werkstofftechnik 28, 357 (1997).

    Article  CAS  Google Scholar 

  36. D. R. Mumm and A. G. Evans, Acta Materialia 48, 1815 (2000).

    Article  CAS  Google Scholar 

  37. V. Gauthier, F. Dettenwanger, and M. Schütze, Intermetallics 10, 667 (2002).

    Article  CAS  Google Scholar 

  38. R. Braun, C. Leyens, and M. Fröhlich, Materials and Corrosion 56, 930 (2005).

    Article  CAS  Google Scholar 

  39. M. Fröhlich, R. Braun, and C. Leyens, Surface and Coatings Technology 201, 3911 (2006).

    Article  CAS  Google Scholar 

  40. R. Braun, M. Fröhlich, W. Braue, and C. Leyens, Surface and Coatings Technology 202, 676 (2007).

    Article  CAS  Google Scholar 

  41. R. Braun, M. Fröhlich, A. Ebach-Stahl, and C. Leyens, Materials and Corrosion 59, 539 (2008).

    Article  CAS  Google Scholar 

  42. C. Leyens, R. Braun, and M. Peters, in Ti-2003, Science and Technology, eds. G. Lütjering and J. Albrecht (WILEY-VCH Verlag GmbH, Weinheim, 2004), p. 2441.

  43. A. Hellwig, M. Palm, and G. Inden, Intermetallics 6, 79 (1998).

    Article  CAS  Google Scholar 

  44. F. Dettenwanger, E. Schumann, M. Rühle, J. Rakowski, and G. H. Meier, Oxidation of Metals 50, 269 (1998).

    Article  CAS  Google Scholar 

  45. C. Zhou, H. Xu, S. Gong, and K. Y. Kim, Materials Science and Engineering A 341, 169 (2003).

    Article  Google Scholar 

  46. R. Streiff and S. Poize, in High Temperature Corrosion, ed. R. A. Rapp (National Association of Corrosion Engineers, Houston, 1983), p. 591.

  47. T. C. Munro and B. Gleeson, Materials Science Forum 251–254, 753 (1997).

    Article  Google Scholar 

  48. A. Donchev, B. Gleeson, and M. Schütze, Intermetallics 11, 387 (2003).

    Article  CAS  Google Scholar 

  49. A. Donchev, E. Richter, M. Schütze, and R. Yankov, Intermetallics 14, 1168 (2006).

    Article  CAS  Google Scholar 

  50. D. R. Clarke and C. G. Levi, Annual Review of Materials Research 33, 383 (2003).

    Article  CAS  Google Scholar 

  51. P. Kofstad, High Temperature Corrosion (Elsevier, Amsterdam, 1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Braun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Braun, R., Fröhlich, M., Leyens, C. et al. Oxidation Behaviour of TBC Systems on γ-TiAl Based Alloy Ti–45Al–8Nb. Oxid Met 71, 295–318 (2009). https://doi.org/10.1007/s11085-009-9144-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-009-9144-3

Keywords

Navigation