Advertisement

Oxidation of Metals

, Volume 86, Issue 3–4, pp 193–203 | Cite as

Internal Oxidation of Ternary Alloys Forming a High Oxygen Conductive Oxide

  • R. Mertel
  • C. H. Konrad
  • M. Terock
  • R. Völkl
  • U. Glatzel
Original Paper

Abstract

Five ternary alloys consisting of a noble base metal (Ni, Co, Fe, Cu) and two reactive metals (Zr + Y, Ce + Gd) being able to form a high oxygen ion conductive oxide were internally oxidized under low oxygen partial pressures. All alloys developed either a continuous yttria-stabilized zirconia phase or a continuous gadolinia-doped ceria phase behind the front of internal oxidation. A Ni–Ce–Gd alloy showed extraordinarily high internal oxidation rates of up to 120 µm2/s at 900 °C. High internal oxidation rates in these ternary alloys were not limited to low concentrations of the reactive metals. The type of the internal oxide phase was found to be more important for the internal oxidation kinetics than the noble base metal.

Keywords

Internal oxidation Diffusion YSZ GDC 

Notes

Acknowledgments

The financial support from the Deutsche Forschungsgemeinschaft (DFG) within the project GL 181/32-1 is gratefully acknowledged.

References

  1. 1.
    C. Wagner, Zeitschrift für Elektrochemie 63(7), 772 (1959) .Google Scholar
  2. 2.
    F. Gesmundo and B. Gleeson, Oxidation of Metals 44, 211 (1995).CrossRefGoogle Scholar
  3. 3.
    I. Anžel, A. C. Kneissl, L. Kosec, and A. Krizman, Zeitschrift für Metallkunde 88(8), 38 (1997).Google Scholar
  4. 4.
    B. Kloss, M. Wenderoth, U. Glatzel, and R. Völkl, Oxidation of Metals 61, 239 (2004).CrossRefGoogle Scholar
  5. 5.
    C. Konrad, L. Fuhrmann, R. Völkl, and U. Glatzel, Corrosion Science 63, 187 (2012).CrossRefGoogle Scholar
  6. 6.
    L. Fuhrmann, C. H. Konrad, R. Völkl, and U. Glatzel, Corrosion Science 94, 218 (2015).CrossRefGoogle Scholar
  7. 7.
    B. Steele, Solid State Ionics 129, 95 (2000).CrossRefGoogle Scholar
  8. 8.
    S. M. Haile, Acta Materialia 51, 5981 (2003).CrossRefGoogle Scholar
  9. 9.
    M. Nanko, M. Ozawa, and T. Maruyama, Journal of the Electrochemical Society 147(1), 283 (2000).CrossRefGoogle Scholar
  10. 10.
    C. J. Howard and R. J. Hill, Journal of Material Science 26, 127 (1991).CrossRefGoogle Scholar
  11. 11.
    H. J. T. Ellingham, Journal of the Society of Chemical Industry 63, 125 (1944).CrossRefGoogle Scholar
  12. 12.
    F. Stott, G. Wood, D. Whittle, B. Bastow, Y. Shida, and A. Martinezvillafane, Solid State Ionics 12, 365 (1984).CrossRefGoogle Scholar
  13. 13.
    M. S. Nagorka, C. G. Levi, and G. E. Lucas, Metallurgical and Materials Transaction A 26, 859 (1995).CrossRefGoogle Scholar
  14. 14.
    C. H. Konrad, R. Völkl, and U. Glatzel, Oxidation of Metals 77, 149 (2012).CrossRefGoogle Scholar
  15. 15.
    F. H. Rhines, Transaction of Metallurgical Society of AIME 137, 246 (1940).Google Scholar
  16. 16.
    S. P. S. Badwal and F. T. Ciacchi, Ionics 6, 1 (2000).CrossRefGoogle Scholar
  17. 17.
    H. Inaba, Solid State Ionics 122, 95 (1999).CrossRefGoogle Scholar
  18. 18.
    M. L. Narula, V. B. Tare, and W. L. Worrell, Metallurgical Transactions B 14, 673 (1983).CrossRefGoogle Scholar
  19. 19.
    J.-W. Park and C. J. Altstetter, Metallurgical Transactions A 18, 43 (1987).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • R. Mertel
    • 1
  • C. H. Konrad
    • 1
  • M. Terock
    • 1
  • R. Völkl
    • 1
  • U. Glatzel
    • 1
  1. 1.Metals and AlloysUniversity BayreuthBayreuthGermany

Personalised recommendations