Skip to main content
Log in

Microstructure and Oxidation Mechanism Evolution of Co–17Re–25Cr–2Si in the Temperature Range 800–1,100 °C

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The oxidation behavior of the newly developed Co–Re–Cr-based alloy Co–17Re–25Cr–2Si (at.%) has been studied in laboratory air at 800–1,100 °C. A transition of oxidation mechanism was observed in the alloy within this temperature range. At 800 and 900 °C, the oxide scale mainly consists of an outermost Co-oxide layer and an inner spinel CoCr2O4 layer. Few SiO2 particles were found in the inner oxide layer. Re oxidizes and then evaporates during the exposure to air since both of these two layers are not protective. Above 1,000 °C, the main oxide product is a continuous compact Cr2O3 layer. SiO2 was found as inner oxides particles underneath the Cr2O3 layer. Thus, the evaporation of Re-oxide is strongly retarded. Due to the outward diffusion of Cr during the formation of the Cr2O3 scale, the original Cr-rich sigma (σ) phase at the subsurface dissolves. Furthermore, the hcp Co solid-solution matrix supersaturated in Cr an Re brings about the precipitation of the secondary σ phase in the substrate during oxidation test.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. J. H. Perepezko, Science 326, 1068 (2009).

    Article  Google Scholar 

  2. B. P. Bewlay, M. R. Jackson, P. R. Subramanian and J. C. Zhao, Metallurgical and Materials Transactions A 34, 2043 (2003).

    Article  Google Scholar 

  3. S. Burk, B. Gorr, V. B. Trindade and H.-J. Christ, Oxidation of Metals 73, 163 (2009).

    Article  Google Scholar 

  4. S. Majumdar, A. Kumar, D. Schliephake, H. J. Christ, X. Jiang and M. Heilmaier, Materials Science and Engineering A 573, 257 (2013).

    Article  Google Scholar 

  5. M. Azimovna Azim, S. Burk, B. Gorr, H.-J. Christ, D. Schliephake, M. Heilmaier, R. Bornemann and P. Bolívar, Oxidation of Metals 80, 231 (2013).

    Article  Google Scholar 

  6. J. Rösler, D. Mukherji and T. Baranski, Advanced Engineering Materials 9, 876 (2007).

    Article  Google Scholar 

  7. B. Gorr, V. Trindade, S. Burk, H.-J. Christ, M. Klauke, D. Mukherji and J. Rösler, Oxidation of Metals 71, 157 (2009).

    Article  Google Scholar 

  8. T. Depka, C. Somsen, G. Eggeler, D. Mukherji, J. Rösler, M. Krüger, H. Saage and M. Heilmaier, Materials Science and Engineering A 510–511, 337 (2009).

    Article  Google Scholar 

  9. M. Brunner, R. Hüttner, M.-C. Bölitz, R. Völkl, D. Mukherji, J. Rösler, T. Depka, C. Somsen, G. Eggeler and U. Glatzel, Materials Science and Engineering A 528, 650 (2010).

    Article  Google Scholar 

  10. B. Gorr, S. Burk, T. Depka, C. Somsen, H. Abu-Samra, H.-J. Christ and G. Eggeler, International Journal of Materials Research 103, 24 (2012).

    Article  Google Scholar 

  11. L. Wang, B. Gorr, H.-J. Christ, D. Mukherji and J. Rösler, Oxidation of Metals 80, 49 (2013).

    Article  Google Scholar 

  12. D. Mukherji, P. Strunz, S. Piegert, R. Gilles, M. Hofmann, M. Holzel and J. Rosler, Metallurgical and Materials Transactions A 43A, 1834 (2012).

    Article  Google Scholar 

  13. P. Y. Hou and J. Stringer, Oxidation of Metals 29, 45 (1988).

    Article  Google Scholar 

  14. E. M. Fryt, G. C. Wood, F. H. Stott and D. P. Whittle, Oxidation of Metals 23, 77 (1985).

    Article  Google Scholar 

  15. S. Espevik, R. A. Rapp, P. L. Daniel and J. P. Hirth, Oxidation of Metals 20, 37 (1983).

    Article  Google Scholar 

  16. K. Przybylski and D. Szwagierczak, Oxidation of Metals 17, 267 (1982).

    Article  Google Scholar 

  17. C. A. Barrett and C. E. Lowell, Oxidation of Metals 12, 293 (1978).

    Article  Google Scholar 

  18. I. G. Wright and G. C. Wood, Oxidation of Metals 11, 163 (1977).

    Article  Google Scholar 

  19. P. K. Kofstad and A. Z. Hed, Oxidation of Metals 2, 101 (1970).

    Article  Google Scholar 

  20. J. Stringer and I. G. Wright, Oxidation of Metals 5, 59 (1972).

    Article  Google Scholar 

  21. D. E. Jones and J. Stringer, Oxidation of Metals 9, 409 (1975).

    Article  Google Scholar 

  22. P. K. Kofstad and A. Z. Hed, Materials and Corrosion 21, 894 (1970).

    Article  Google Scholar 

  23. B. Gorr, S. Burk, V. B. Trindade and H.-J. Christ, Materials and Corrosion 61, 741 (2010).

    Article  Google Scholar 

  24. B. Gorr, S. Burk, V. Trindade and H.-J. Christ, Oxidation of Metals 74, 239 (2010).

    Article  Google Scholar 

  25. J. W. Weeton, Diffusion of Chromium in Alpha Cobalt-Chromium Solid Solutions, (U. S. Goverment Printing Office, Ohio, 1951).

    Google Scholar 

  26. M. Skeldon, J. M. Calvert and D. G. Lees, Oxidation Of Metals 28, 109 (1987).

    Article  Google Scholar 

  27. J. Stringer, B. A. Wilcox and R. I. Jaffee, Oxidation of Metals 5, 11 (1972).

    Article  Google Scholar 

  28. I.G. Wright, J. Stringer, B.A. Wilcox, and R.I. Jaffee, Oxidation and hot corrosion of Ni-Cr- and Co-Cr-base alloys containing rare earth oxide dispersions, Defense Technical Information Center, 1971.

  29. D. P. Whittle and J. Stringer, Physical and Engineering Sciences 295, 309 (1980).

    Article  Google Scholar 

  30. P. Y. Hou and J. Stringer, Materials Science and Engineering: A 202, 1 (1995).

    Article  Google Scholar 

  31. D. Sumoyama, K. Z. Thosin, T. Nishimoto, T. Yoshioka, T. Izumi, S. Hayashi and T. Narita, Oxidation of Metals 68, 313 (2007).

    Article  Google Scholar 

Download references

Acknowledgments

Financial support of Deutsche Forschungsgemeinschaft (DFG) in the framework of Research Group DFG-FOR727 ‘‘Beyond Ni-Base Superalloys’’ is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Gorr, B., Christ, HJ. et al. Microstructure and Oxidation Mechanism Evolution of Co–17Re–25Cr–2Si in the Temperature Range 800–1,100 °C. Oxid Met 83, 465–483 (2015). https://doi.org/10.1007/s11085-014-9515-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-014-9515-2

Keywords

Navigation