Skip to main content
Log in

Oxidation Behaviour of Model Cobalt-Rhenium Alloys During Short-Term Exposure to Laboratory Air at Elevated Temperature

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The alloys being used in high-temperature systems such as stationary gas turbines and aircraft engines are iron-, cobalt- and nickel-based superalloys, amongst which the latter is the most widely used for highest temperatures. However, the use of Ni-based alloys is limited to temperatures below 1,100 °C. The experimental Co–Re-based alloys are promising for high-temperature applications for service temperatures beyond 1,200 °C. The purpose of the present investigations, at this still early stage of the alloy development, is to gain a first insight into the oxidation mechanisms and to find ways to improve oxidation resistance of this class of materials. Thermogravimetric studies in combination with microstructural examinations of six model Co–Re alloys with different compositions showed the negative influence of rhenium on the oxidation resistance of Co-based alloys due to evaporation of rhenium oxide(s). Oxidation at 1,000 °C in air yielded an oxide scale, that consists of a Co-oxide outer layer on a thick and porous Co–Cr oxide and a semicontinuous and therefore non-protective Cr-oxide film on the base metal substrate. This allowed for the vaporization of rhenium oxide formed during oxidation and hence led to a loss of Re. Computer-aided thermodynamic calculations were carried out to supplement the experimental analyses and were found to reasonably predict the stability ranges of the various oxide phases observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. C. R. Brooks, Heat Treatment, Structure and Properties of Nonferrous Alloys (American Society for Metals, Ohio, 1984).

    Google Scholar 

  2. J. Rösler, D. Mukherji, and T. Baranski, Advanved Engineering Materials 9, 876 (2007).

    Article  Google Scholar 

  3. P. C. Sullivan, M. J. Donachie, and F. R. Morral, Cobalt-Base Superalloy-1970, Cobalt Monograph Series (Cobalt Information Center, Brussels, 1970).

  4. G. E. Andre, R. Breckpot, L. Habraken, J. C. Jungers, P. Kipfer, G. V. JRaynor, and H. Schuiling, Cobalt Monograph (Cobalt Information Center, Brussels, 1960).

  5. R. Bürgel, Hochtemperaturwerkstofftechnik (Vieweg, Braunschweig, 2001).

    Google Scholar 

  6. P. S. Liu and K. M. Liang, Oxidation of Metals 53, 351 (2000).

    Article  CAS  Google Scholar 

  7. P. S. Liu, K. M. Liang, H. Y. Zhou, H. R. Guan, X. F. Sun, T. Jin, and K. N. Yang, Oxidation of Metals 55, 543 (2000).

    Article  Google Scholar 

  8. W. Betteridge, Cobalt and its Alloys (Ellis Horwood Ltd., Chichester, 1982).

    Google Scholar 

  9. P. C. Patnaik, High Temperature Oxidation and Hot Corrosion of Nickel and Cobalt Based Superalloys, Aeronautical Note NAE-AN-33 NRC No. 25075 (Ottawa, 1985).

  10. R. L. Dreshfield, J. C. Freche, and G. D. Sandrock, Modification of High-Temperature Cobalt-Tungsten Alloys for Improved Stability, Report NASA TN D-6147 (Ohio, 1971).

  11. T. C. Chou, A. Joshi, and C. M. Packer, Scripta Metallurgica et Materialia 28, 1565 (1993).

    Article  CAS  Google Scholar 

  12. B. D. Bryskin, Advanced Materials & Processes 10, 83 (1998).

    Google Scholar 

  13. Y. N. Gornostyrev, M. I. Katsnel’son, A. V. Trefilov, and R. F. Sabiryanov, The Physics of Metals and Metallography 74, 421 (1992).

    Google Scholar 

  14. B. D. Bryskin, Heat Treating 6, 10 (1993).

    Google Scholar 

  15. L. Huang, X. F. Sun, H. R. Guang, and Z. Q. Hu, Surface & Coatings Technology 200, 6863 (2006).

    Article  CAS  Google Scholar 

  16. C. T. Liu, X. F. Sun, H. R. Guang, and Z. Q. Hu, Surface & Coatings Technology 197, 39 (2005).

    Article  CAS  Google Scholar 

  17. K. B. Lebedev, The Chemistry of Rhenium (Butterworths, London, 1962).

  18. M. Klauke, D. Mukherji, B. Gorr, J. Rösler, and H.-J. Christ, International Journal of Materials Research, 100, 1 (2009).

    Google Scholar 

  19. V. B. Trindade, Hochtemperaturoxidation Chromlegierter Stähle und von Nickel-Basislegierungen: Experimentelle Untersuchung und Computersimulation, Ph.D. thesis (Shaker Verlag, Aachen, 2005).

  20. C. K. Kim and L. W. Hobbs, Oxidation of Metals 47, 69 (1997).

    Article  CAS  Google Scholar 

  21. P. Kofstad, High Temperature Corrosion (Elsevier Applied Science, London, 1988).

    Google Scholar 

  22. P. Kofstad, Oxidation of Metals 24, 265 (1985).

    Article  CAS  Google Scholar 

  23. F. H. Stott, Oxidation of Metals 11, 141 (1977).

    Article  CAS  Google Scholar 

  24. B. A. Pint, Oxidation of Metals 39, 167 (1933).

    Article  Google Scholar 

  25. K. P. Lillerud and P. Kofstad, Oxidation of Metals 17, 127 (1982).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study has been supported by Deutsche Forschungsgemeinschaft in the framework of the DFG research group “Beyond Ni-base Superalloys”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Gorr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gorr, B., Trindade, V., Burk, S. et al. Oxidation Behaviour of Model Cobalt-Rhenium Alloys During Short-Term Exposure to Laboratory Air at Elevated Temperature. Oxid Met 71, 157–172 (2009). https://doi.org/10.1007/s11085-008-9133-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-008-9133-y

Keywords

Navigation