Skip to main content
Log in

Evolution of Oxide Film of T91 Steel in Water Vapor Atmosphere at 750 °C

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

In order to investigate the evolution of oxide film on T91 steel, oxidation tests were conducted in water vapor atmosphere at 750 °C. The phase compositions and microstructures of the oxide scales for early stage oxidation were investigated by using glancing angle XRD and SEM equipped with EDS. The results showed that during the initial oxidation stage Cr-rich oxide film formed and then it covered the sample surface rapidly. The initial Cr-rich oxide film was mainly composed of FeCr2O4, (Fe,Cr)2O3 and Fe2O3. This oxide film acted as a barrier against outward diffusion of iron and inward diffusion of oxygen. During the initial oxidation stage, chromium in the sample surface was consumed gradually, and then a large amount of iron ions penetrated the oxide film and diffused rapidly to the sample surface, resulting in forming an outer “non-protective” Fe2O3 layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. V. Thomas Paul, S. Saroja and M. Vijayalakshmi, Journal of Nuclear Materials 378, 273 (2008).

    Article  Google Scholar 

  2. E. M. Haney, F. Dalle, M. Sauzay, L. Vincent, I. Tournié, L. Allais and B. Fournier, Materials Science and Engineering A 510, 99 (2009).

    Article  Google Scholar 

  3. M. Mungole, G. Sahoo, S. Bhargava and R. Balasubramaniam, Materials Science and Engineering A 476, 140 (2008).

    Article  Google Scholar 

  4. D. Deng and H. Murakawa, Computational Materials Science 37, 209 (2006).

    Article  Google Scholar 

  5. F. Abe, Science and Technology of Advanced Materials 9, 013002 (2008).

    Article  Google Scholar 

  6. B. Choudhary and E. Isaac Samuel, Journal of Nuclear Materials 412, 82 (2011).

    Article  Google Scholar 

  7. I. G. Wright, P. F. Tortorelli and M. Schütze, Oxidation growth and exfoliation on alloys exposed to steam. EPRI report no. 1013666, 2007.

  8. P. Ennis and W. Quadakkers, International journal of pressure vessels and piping 84, 75 (2007).

    Article  Google Scholar 

  9. M. Nakai, K. Nagai, Y. Murata and M. Morinaga, Corrosion Science 48, 3869 (2006).

    Article  Google Scholar 

  10. T. Sundararajan, S. Kuroda, J. Kawakita and S. Seal, Surface and Coatings Technology 201, 2124 (2006).

    Article  Google Scholar 

  11. Y. Chen, K. Sridharan and T. Allen, Corrosion Science 48, 2843 (2006).

    Article  Google Scholar 

  12. M. Montgomery, S. A. Jensen, F. Rasmussen and T. Vilhelmsen, Corrosion Engineering Science and Technology 44, 196 (2009).

    Article  Google Scholar 

  13. D.-Q. Zhang, G.-M. Liu, G.-Q. Zhao and Y.-J. Guan, Journal of Central South University of Technology 16, 535 (2009).

    Article  Google Scholar 

  14. P. Ampornrat and G. S. Was, Journal of Nuclear Materials 371, 1 (2007).

    Article  Google Scholar 

  15. S. R. J. Saunders, M. Monteiro and F. Rizzo, Progress in Materials Science 53, 775 (2008).

    Article  Google Scholar 

  16. I. G. Wright and R. B. Dooley, International Materials Reviews 55, 50 (2010).

    Article  Google Scholar 

  17. E. Park, B. Huning, S. Borodin, M. Rohwerder and M. Spiegel, Materials at High Temperatures 22, 3 (2005).

    Article  Google Scholar 

  18. M. Heinonen, K. Kokko, M. Punkkinen, E. Nurmi, J. Kollár and L. Vitos, Oxidation of Metals 76, 331 (2011).

    Article  Google Scholar 

  19. M. H. B. Ani, T. Kodama, M. Ueda, K. Kawamura and T. Maruyama, Materials transactions 50, 2656 (2009).

    Article  Google Scholar 

  20. N. K. Othman, J. Zhang and D. J. Young, Oxidation of Metals 73, 337 (2010).

    Article  Google Scholar 

  21. Y. Chen, K. Sridharan, T. R. Allen and S. Ukai, Journal of Nuclear Materials 359, 50 (2006).

    Article  Google Scholar 

  22. Z. Tökei, H. Viefhaus and H. Grabke, Applied surface science 165, 23 (2000).

    Article  Google Scholar 

  23. G. H. Meier, K. Jung, N. Mu, N. M. Yanar, F. S. Pettit, J. P. Abellán, T. Olszewski, L. N. Hierro, W. J. Quadakkers and G. R. Holcomb, Oxidation of Metals 74, 319 (2010).

    Article  Google Scholar 

  24. W. Quadakkers, J. Żurek and M. Hänsel, Journal of the Minerals Metals Materials Society 61, 44 (2009).

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by National Science Foundation of China under Grant No. 51161022 and the Science and Technology Foundation of Department of Education of Jiangxi Province, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangming Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, G., Wang, C., Yu, F. et al. Evolution of Oxide Film of T91 Steel in Water Vapor Atmosphere at 750 °C. Oxid Met 81, 383–392 (2014). https://doi.org/10.1007/s11085-013-9448-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-013-9448-1

Keywords

Navigation