Skip to main content
Log in

Initial Oxidation of Fe–Al and Fe–Cr–Al Alloys: Cr as an Alumina Booster

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The boosting effect of Cr on the growth of the protective alumina scale on Fe–Al alloys is investigated by X-ray photoelectron spectroscopy. Using low oxygen pressure the surface chemistry of the alloys is monitored starting from the first moments of oxidation. Chromium affects the Fe/Al surface-bulk exchange which is clearly detected by analyzing the measured surface concentrations within the atomic concentration models. Experimental results presented are in good agreement with the previous ones obtained by experiments at ambient conditions and ab initio calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. S. L. Case and K. R. van Horn, in Aluminium in Iron and Steel. Alloys of Iron Research Monograph Series, ed. F. T. Sisco (John Wiley and Sons, Inc., New York, 1953).

  2. A. S. Khanna, Introduction to High Temperature Oxidation and Corrosion (AMS International, Materials Park, OH, 2002).

    Google Scholar 

  3. A. S. Khanna, in Handbook of Environmental Degradation of Materials, ed. M. Kutz (William Andrew Publishing, Norwich, NY, 2005), p. 105.

  4. P. Tomaszewicz and G. R. Wallwork, Review of High Temperature Materials 4, 75 (1978).

    CAS  Google Scholar 

  5. R. Prescott and M. J. Graham, Oxidation of Metals 38, 73 (1992).

    Article  CAS  Google Scholar 

  6. F. H. Stott, G. C. Wood, and J. Stringer, Oxidation of Metals 44, 113 (1995).

    Article  CAS  Google Scholar 

  7. M. P. Brady, B. Gleeson, and I. G. Wright, JOM Journal of the Minerals, Metals and Materials Society 52, 16 (2000).

    CAS  Google Scholar 

  8. I. Gurrappa, S. Weinbruch, D. Naumenko, and W. J. Quadakkers, Materials and Corrosion 51, 224 (2000).

    Google Scholar 

  9. N. Babu, R. Balasubramaniam, and A. Ghosh, Corrosion Science 43, 2239 (2001).

    Article  CAS  Google Scholar 

  10. D. B. Lee, G. Y. Kim, and J. G. Kim, Materials Science and Engineering A 339, 109 (2003).

    Article  Google Scholar 

  11. P. Y. Hou, Journal of the American Ceramic Society 86, 660 (2003).

    Article  CAS  Google Scholar 

  12. I. G. Wright, R. Peraldi, and B. A. Pint, Materials Science Forum 461–464, 579 (2004).

    Article  Google Scholar 

  13. J. A. Nychka and D. R. Clarke, Oxidation of Metals 63, 325 (2005).

    Article  CAS  Google Scholar 

  14. Z. G. Zhang, F. Gesmundo, P. Y. Hou, and Y. Niu, Corrosion Science 48, 741 (2006).

    Article  CAS  Google Scholar 

  15. H. Asteman and M. Spiegel, Corrosion Science 50, 1734 (2008).

    Article  CAS  Google Scholar 

  16. Y. Niu, S. Wang, F. Gao, Z. G. Zhang, and F. Gesmundo, Corrosion Science 50, 345 (2008).

    Article  CAS  Google Scholar 

  17. E. Airiskallio, E. Nurmi, M. H. Heinonen, I. J. Väyrynen, K. Kokko, M. Ropo, M. P. J. Punkkinen, H. Pitkänen, M. Alatalo, J. Kolláar, et al., Corrosion Science 52, 3394 (2010).

    Article  CAS  Google Scholar 

  18. C. Wagner, Corrosion Science 5, 751 (1965).

    Article  CAS  Google Scholar 

  19. S.W. Guan and W.W. Smeltzer Oxidation of Metals 42, 375 (1994).

    CAS  Google Scholar 

  20. A. Velon and I. Olefjord, Oxidation of Metals 56, 425 (2001).

    Article  CAS  Google Scholar 

  21. H. Götlind, F. Liu, J.-E. Svensson, M. Halvarsson, and L.-G. Johansson, Oxidation of Metals, 67, 251 (2007).

    Article  Google Scholar 

  22. H. Josefsson, F. Liu, J.-E. Svensson, M. Halvarsson, and L.-G. Johansson, Materials and Corrosion 56, 801 (2005).

    Article  CAS  Google Scholar 

  23. G. Berthomé, E. N’Dah, Y. Wouters, and A. Galerie, Materials and Corrosion 56, 389 (2005).

    Article  Google Scholar 

  24. E. Airiskallio, E. Nurmi, M. H. Heinonen, I. J. Väyrynen, K. Kokko, M. Ropo, M. P. J. Punkkinen, H. Pitkänen, M. Alatalo, J. Kollár, et al., Physical Review B 81, 033105 (2010).

    Article  Google Scholar 

  25. H. Graupner, L. Hammer, K. Müller, and D. M. Zehner, Surface Science 322, 103 (1995).

    Article  CAS  Google Scholar 

  26. P. Hohenberg and W. Kohn, Physical Review 136, B864 (1964).

    Article  Google Scholar 

  27. W. Kohn and L. Sham, Physical Review 140, A1133 (1965).

    Article  Google Scholar 

  28. L. Vitos, I. A. Abrikosov, and B. Johansson, Physical Review Letters 87, 156401 (2001).

    Article  CAS  Google Scholar 

  29. L. Vitos, Computational Quantum Mechanics for Materials Engineers: The EMTO Method and Applications, Engineering Materials and Processes Series (Springer, London, 2007).

    Google Scholar 

  30. J. N. Andersen, D. Hennig, E. Lundgren, M. Methfessel, R. Nyholm, and M. Scheffler, Physical Review B 50, 17525 (1994).

    Article  CAS  Google Scholar 

  31. O. K. Andersen, O. Jepsen, and G. Krier, in Lectures on Methods of Electronic Structure Calculations, eds., V. Kumar, O. K. Andersen, and A. Mookerjee (World Scientific Publishing Co., Singapore, 1994), p. 63

  32. L. Vitos, Physical Review B 64, 014107 (2001).

    Article  Google Scholar 

  33. L. Vitos, H. L. Skriver, B. Johansson, and J. Kollár, Computational Materials Science 18, 24 (2000).

    Article  CAS  Google Scholar 

  34. M. Zwierzycki and O. K. Andersen, Acta Physica Polonica A 115, 64 (2009).

    CAS  Google Scholar 

  35. J. P. Perdew, K. Burke, and M. Ernzerhof, Physical Review Letters 77, 3865 (1996).

    Article  CAS  Google Scholar 

  36. F. Lechermann, M. Fähnle, B. Meyer, and C. Elsässer, Physical Review B 69, 165116 (2004).

    Article  Google Scholar 

  37. P. G. Gonzales-Ormeño, H. M. Petrilli, and C. G. Schön, Scripta Materialia 54, 1271 (2006).

    Article  Google Scholar 

  38. P. Soven, Physical Review 156, 809 (1967).

    Article  CAS  Google Scholar 

  39. B. L. Györffy, Physical Review B 5, 2382 (1972).

    Article  Google Scholar 

  40. I. Olefjord, H. J. Mathieu, and P. Marcus, Surface and Interface Analysis 15, 681 (1990).

    Article  CAS  Google Scholar 

  41. P. C. Tortorici and M. A. Dayananda, Materials Science and Engineering A244, 207 (1998).

    Article  Google Scholar 

Download references

Acknowledgments

Part of the work was supported by the Turku University foundation (N:o 7743).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Nurmi.

Additional information

Prof. J. Kollár deceased (January 13, 2011).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heinonen, M.H., Kokko, K., Punkkinen, M.P.J. et al. Initial Oxidation of Fe–Al and Fe–Cr–Al Alloys: Cr as an Alumina Booster. Oxid Met 76, 331–346 (2011). https://doi.org/10.1007/s11085-011-9258-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-011-9258-2

Keywords

Navigation