Skip to main content
Log in

Slow Transition from Protective to Breakaway Oxidation of Haynes 214 Foil at High Temperature

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The oxidation behaviour of thin sheet specimens of the alumina forming nickel base alloy 214 in the temperature range 1,100–1,200 °C is described. Rapid transient oxidation produces a spinel oxide layer which then stops growing, as a protective alumina layer forms beneath. The slow growth of this alumina ceases when the alloy aluminium content is exhausted. Subsequent formation of an innermost chromia layer signals an increase in oxygen activity at the scale-alloy interface. The abnormally slow growth of this layer extends the alloy lifetime. Examination of individual layer growth processes revealed a complex time dependence of spinel composition as a result of Cr evaporation, and dissolution of alumina in the innermost chromia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. D. J. Young, High Temperature Oxidation and Corrosion of Metals, (Elsevier, Oxford, 2008).

    Google Scholar 

  2. C. Gindorf, L. Singheiser, and K. Hilpert, Steel Research 72, 528 (2001).

    CAS  Google Scholar 

  3. W. J. Quadakkers, J. Piron-Abellan, V. Shemet, and L. Singheiser, Materials at High Temperatures 20, 115 (2003).

    Article  CAS  Google Scholar 

  4. J. Froitzheim, H. Ravash, E. Larsson, L. G. Johansson, and J. E. Svensson, Journal of the Electrochemical Society 157, B1295 (2010).

    Article  CAS  Google Scholar 

  5. D. J. Young and B. A. Pint, Oxidation of Metals 66, 137 (2006).

    Article  CAS  Google Scholar 

  6. D. Naumenko, V. Shemet, L. Singheiser, and W. J. Quadakkers, Journal of Materials Science 44, 1687 (2009).

    Article  CAS  Google Scholar 

  7. C. T. Sims, N. S. Stoloff, and W. C. Hagel, Superalloys II—High Temperature Materials for Aerospace and Industrial Power (Wiley, New York, 1987).

    Google Scholar 

  8. M. Bensch, J. Preussner, R. Huttner, G. Obigodi, S. Virtanen, J. Gabel, and U. Glatzel, Acta Materialia 58, 1607 (2010).

    Article  CAS  Google Scholar 

  9. R. Janakiraman, G. H. Meier, and F. S. Pettit, Metallurgical and Materials Transactions A 30, 2905 (1999).

    Article  Google Scholar 

  10. V. P. Deodeshmukh, S. J. Matthews, and D. L. Klarstrom, International Journal of Hydrogen Energy 36, 4580 (2011).

    Article  CAS  Google Scholar 

  11. B. A. Pint, L. R. Walker, and I. G. Wright, Materials at High Temperatures 21, 175 (2004).

    Article  CAS  Google Scholar 

  12. I. E. Anderson, B. K. Lograsso, R. Terpstra, and B. Gleeson, in Powder Metallurgy Alloys and Particulate Materials for Industrial Applications, eds., D. E. Alman and J. W. Newkirk (TMS, Warrandale, 2000), p. 11.

  13. H. P. Degischer and B. Kriszt, Handbook of Cellular Metals: Production, Processing Applications (Wiley-VCH, Weinheim, 2002).

    Book  Google Scholar 

  14. W. J. Quadakkers and K. Bongartz, Werkstoffe und Korrosion 45, 232 (1994).

    Article  CAS  Google Scholar 

  15. D. Naumenko, L. Singheiser, and W. J. Quadakkers, in Cyclic Oxidation of High Temperature Materials (EFC Publications, Frankfurt, 1999), p. 287.

  16. H. E. Evans, A. T. Donaldson, and T. C. Gilmour, Oxidation of Metals 52, 379 (1999).

    Article  CAS  Google Scholar 

  17. W. J. Quadakkers and M. J. Bennett, Materials Science and Technology 10, 126 (1994).

    Article  CAS  Google Scholar 

  18. V. P. Deodeshmukh and S. K. Srivastava, in Superalloys 2008 (Seven Springs, PA, 2008), p. 689.

  19. D. J. Young, A. Chyrkin, and W. J. Quadakkers, Oxidation of Metals 77, 253 (2012).

    Article  CAS  Google Scholar 

  20. W. J. Quadakkers, A. Elschner, W. Speier, and H. Nickel, Applied Surface Science 52, 271 (1991).

    Article  CAS  Google Scholar 

  21. W. J. Quadakkers and H. Viefhaus, in EFC-Workshop “Methods and Testing in High Temperature Corrosion”, eds., H. J. Grabke and D. B. Meadowcroft (The Institute of Materials, Frankfurt, 1995).

  22. B. A. Pint, R. W. Swindeman, K. L. More, and P. F. Tortorelli, ASME Paper 2001-GT-445, presented at the International Gas Turbine Aeroengine Congress Exhibition, New Orleans, LA, June 4–7 (2001).

  23. C. S. Giggins and F. S. Pettit, Journal of the Electrochemical Society 118, 1782 (1971).

    Article  CAS  Google Scholar 

  24. L. Hu, D. B. Hovis, and A. H. Heuer, Oxidation of Metals 73, 275 (2010).

    Article  CAS  Google Scholar 

  25. B. H. Kear, F. S. Pettit, L. P. Lemaire, and D. E. Fornwalt, Oxidation of Metals 3, 557 (1971).

    Article  CAS  Google Scholar 

  26. G. C. Wood and B. Chattopa, Corrosion Science 10, 471 (1970).

    Article  CAS  Google Scholar 

  27. G. C. Wood, B. Chattopa, and F. H. Stott, Journal of the Electrochemical Society 117, 254 (1970).

    Article  Google Scholar 

  28. M. C. Maris-Sida, G. H. Meier, and F. S. Pettit, Metallurgical and Materials Transactions A 34, 2609 (2003).

    Article  Google Scholar 

  29. F. A. Elrefaie and W. W. Smeltzer, Journal of the Electrochemical Society 128, 2237 (1981).

    Article  CAS  Google Scholar 

  30. K. T. Jacob and C. B. Alcock, Journal of Solid State Chemistry 20, 79 (1977).

    Article  CAS  Google Scholar 

  31. A. Borgenstam, A. Engstrom, L. Hoglund, and J. Agren, Journal of Phase Equilibria 21, 269 (2000).

    Article  CAS  Google Scholar 

  32. MOBNi1, TCS Ni-Alloys Mobility Database (Royal Institute of Technology, Foundation of Computational Thermodynamics, Stockholm, 2006).

  33. TTNI7, TT Ni-Based Superalloys Database (Thermo-Calc Software AB, Stockholm, 2006).

  34. F. Bondioli, A. M. Ferrari, C. Leonelli, T. Manfredini, L. Linati, and P. Mustarelli, Journal of the American Ceramic Society 83, 2036 (2000).

    Article  CAS  Google Scholar 

  35. G. J. Tatlock, H. Al-Badairy, M. J. Bennett, and J. R. Nicholls, Materials at High Temperatures 22, 467 (2005).

    Article  CAS  Google Scholar 

  36. G. Strehl, H. Al-Badairy, L. M. Rodriguez, J. Klower, G. Borchardt, G. Tatlock, and A. J. Criado, in Cyclic Oxidation of High Temperature Materials: Mechanisms, Testing Methods, Characterisation and Life Time Estimation (EFC Publications, Frankfurt, 1999), p. 82.

  37. D. J. Potter and G. J. Tatlock, High Temperature Corrosion and Protection of Materials 7(Pts 1 and 2) 1093 (2008).

    Google Scholar 

  38. H. E. Evans and M. P. Taylor, Oxidation of Metals 55, 17 (2001).

    Article  CAS  Google Scholar 

  39. D. Caplan and G. I. Sproule, Oxidation of Metals 9, 459 (1975).

    Article  CAS  Google Scholar 

  40. G. R. Holcomb, Oxidation of Metals 69, 163 (2008).

    Article  CAS  Google Scholar 

  41. H. Asteman, J. E. Svensson, L. G. Johansson, and M. Norell, Oxidation of Metals 52, 95 (1999).

    Article  CAS  Google Scholar 

  42. P. Saltykov, O. Fabrichnaya, J. Golczewski, and F. Aldinger, Journal of Alloys and Compounds 381, 99 (2004).

    Article  CAS  Google Scholar 

  43. M. Schütze, M. Malessa, D. Renusch, P. F. Tortorelli, I. G. Wright, and R. B. Dooley, in High-Temperature Oxidation and Corrosion (ISHOC 2005, Nara, Japan, 30 Nov–2 Dec 2006), p. 393.

  44. K. T. Jacob, Journal of the Electrochemical Society 125, 175 (1978).

    Article  CAS  Google Scholar 

  45. K. P. Trumble and M. Rühle, Acta Metall. Mater. 39, 1915 (1991).

    Article  CAS  Google Scholar 

  46. B. Jansson, M. Schalin, M. Selleby, and B. Sundman, in Computer Software in Chemical and Extractive Metallurgy, eds., C. W. Bale and G. A. Irons (Canadian Inst Mining, Metallurgy and Petroleum, Montreal, 1993), p. 57.

  47. W. J. Quadakkers, H. Holzbrecher, K. G. Briefs, and H. Beske, Oxidation of Metals 32, 67 (1989).

    Article  CAS  Google Scholar 

  48. B. Pujilaksono, T. Jonsson, H. Heidari, M. Halvarsson, J. E. Svensson, and L. G. Johansson, Oxidation of Metals 75, 183 (2011).

    Article  CAS  Google Scholar 

  49. W. G. Sloof and T. J. Nijdam, International Journal of Materials Research 100, 1318 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Mr. Cosler and Ms. A. Kick are kindly acknowledged for carrying out high temperature exposures and TG-analyses, Mr. M. Ziegner for XRD measurements, Mr. J. Bartsch and Mr. V. Gutzeit for metallographic preparation. The authors are grateful to Mr. M. Borzikov for carrying out SNMS analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Chyrkin.

Additional information

J. He was formerly with Forschungszentrum Jülich GmbH.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Young, D.J., Chyrkin, A., He, J. et al. Slow Transition from Protective to Breakaway Oxidation of Haynes 214 Foil at High Temperature. Oxid Met 79, 405–427 (2013). https://doi.org/10.1007/s11085-013-9364-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-013-9364-4

Keywords

Navigation