Skip to main content
Log in

Depletion and Voids Formation in the Substrate During High Temperature Oxidation of Ni–Cr Alloys

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

A numerical model to treat the kinetics of vacancy annihilation at the metal/oxide interface but also in the bulk metal has been implemented. This was done using EKINOX, which is a mesoscopic scale 1D-code that simulates oxide growth kinetics with explicit calculation of vacancy fluxes. Calculations were performed for high temperature Ni–Cr alloys oxidation forming a single chromia scale. The kinetic parameters used to describe the diffusion in the alloy were directly derived from an atomistic model. Our results showed that the Cr depletion profile can be strongly affected by the cold work state of the alloy. In fact, the oversaturation of vacancies is directly linked to the efficiency of the sinks which is proportional to the density of dislocations. The resulting vacancy profile highlights a supersaturation of vacancy within the metal. Based on the classical nucleation theory, the possibility and the rate of void formation are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. P. Berthod, Oxidation of Metals 64, 2005 (235).

    Article  CAS  Google Scholar 

  2. E. Y. Shida, G. C. Wood, F. H. Stott, D. P. Whittle and B. D. Bastow, Corrosion Science 21, 1981 (581).

    Article  CAS  Google Scholar 

  3. A. H. Rosenstein, J. K. Tien and W. D. Nix, Metallurgical Transactions A 17A, 1986 (151).

    Article  CAS  Google Scholar 

  4. J. H. Weber and P. S. Gilman, Scripta Metallurgica 18, 1984 (479).

    Article  CAS  Google Scholar 

  5. C. D. L. Douglass, Corrosion Science 8, 1968 (665).

    Article  CAS  Google Scholar 

  6. R. Hales and C. Hill, Corrosion Science 12, 1972 (843).

    Article  CAS  Google Scholar 

  7. E. Aublant, O. Calonne, and M. Foucault, PTCMC-F R 11 0020 internal AREVA report.

  8. D. J. Young, High Temperature Oxidation and Corrosion of Metals, (Elsevier, Amsterdam, 2008).

    Google Scholar 

  9. D. Oquab and D. Monceau, Scripta Metallurgica 44, 2001 (2741).

    Article  CAS  Google Scholar 

  10. B. Gleeson, W. Wang, S. Hayashi and D. Sordelet, Material Science Forum 461–464, 2004 (213).

    Article  Google Scholar 

  11. Y. Cadoret, D. Monceau, M.-P. Bacos, P. Josso, P. Marcus and V. Maurice, Oxidation of Metals 64, 2005 (185).

    Article  CAS  Google Scholar 

  12. H. E. Evans, Materials Science and Technology 4, 1988 (1089).

    Article  CAS  Google Scholar 

  13. B. Pieraggi, R. A. Rapp and J. P. Hirth, Oxidation of Metals 44, 1995 (63).

    Article  CAS  Google Scholar 

  14. R. Francis and D. G. Lees, Materials Science and Engineering 120, 1989 (97).

    Article  Google Scholar 

  15. S. Perusin, B. Viguier, D. Monceau, L. Ressier and E. Andrieu, Acta Materiala 52, 2004 (5375).

    Article  CAS  Google Scholar 

  16. H. B. Huntington and F. Seitz, Physical Review 61, 1942 (315).

    Article  CAS  Google Scholar 

  17. E. O. Kirkendall, Transaction the Metallurgical Society of AIME 147, 1942 (104).

    Google Scholar 

  18. L. Martinelli, F. Balbaud-Célérier, A. Terlain, S. Bosonnet, G. Picard and G. Santarini, Corrosion Science 50, 2008 (2537).

    Article  CAS  Google Scholar 

  19. F. Gesmundo and P. Y. Hou, Oxidation of Metals 59, 2003 (63).

    Article  CAS  Google Scholar 

  20. M. Bobeth, M. Gutkin, W. Pompe and A. E. Romanov, Physica Status Solidi A 165, 1998 (165).

    Article  CAS  Google Scholar 

  21. S. Dryepondt, Y. Zhang and B. A. Pint, Surface and Coating Technology 201, 2006 (3880).

    Article  CAS  Google Scholar 

  22. C. Desgranges, N. Bertrand, K. Abbas, D. Monceau and D. Poquillon, Material Science Forum 461–464, 2004 (481).

    Article  Google Scholar 

  23. N. Bertrand, C. Desgranges, M. Nastar, G. Girardin, D. Poquillon and D. Monceau, Material Science Forum 595–598, 2008 (463).

    Article  Google Scholar 

  24. P. Kofstad, Oxidation of Metals 44, 1995 (3).

    Article  CAS  Google Scholar 

  25. V. Barbe and M. Nastar, TMS Letters, Vol. 2 (TMS, The Minerals, Metals and Materials Society, Warrendale, 2005), p 93.

  26. C. S. Giggins and F. S. Pettit, Transactions of the Metallurgical Society of AIME 245, 1969 (2495).

    CAS  Google Scholar 

Download references

Acknowledgments

F. Delabrouille (EDF) for providing model alloys, P. Poisson and L. Guérin (AREVA) for SEM observations are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clara Desgranges.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Desgranges, C., Lequien, F., Aublant, E. et al. Depletion and Voids Formation in the Substrate During High Temperature Oxidation of Ni–Cr Alloys. Oxid Met 79, 93–105 (2013). https://doi.org/10.1007/s11085-012-9328-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-012-9328-0

Keywords

Navigation