Skip to main content
Log in

Role of interface structure and interfacial defects in oxide scale growth

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Recent studies of the structure and dynamics of solid-solid interfaces have provided some understanding about the role of the scale-metal interface in the growth of reaction product scales on pure metals. The action of interfacial defects (misfit dislocations, misorientation dislocations and disconnections) in the creation and annihilation of the point defects suporting the diffusional growth of scales is considered. Anion point defects (vacancies/interstitials) supporting scale growth by anion diffusion are annihilated/created by the climb of misorientation dislocations or disconnections in the scale at the interface. For scale growth by cation diffusion, cation point defects (vacancies/interstitials) can be annihilated/created by the climb of interfacial misfit or misorientation dislocations in the metal. Because of their necessarily high density, in most cases, the dominant climb of misfit dislocations would be favored. The blocking of interfacial reaction steps can be a means to retard the scaling kinetics and to alter the fundamental scaling mode. For instance, the interfacial segregation of large reactive element ions can pin the interface dislocations, an action which poisons the usual interfacial reaction step. Such considerations are consistent with the well-known phenomena ascribed to the reactive element effect (REE).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Wagner, inAtom Movements (American Society of Metals, Metals Park, 1951), p. 153.

    Google Scholar 

  2. D. Vermilyea,Acta Metall. 5, 492 (1957).

    Google Scholar 

  3. B. Pieraggi and R. A. Rapp,J. Electrochem. Soc. 140, 2844 (1993).

    Google Scholar 

  4. W. A. Tiller,J. Electrochem. Soc. 127, 625 (1980);128, 689 (1981).

    Google Scholar 

  5. B. E. Deal and A. S. Groves,J. Appl. Phys. 36, 3770 (1965).

    Google Scholar 

  6. J. P. Hirth and W. A. Tiller,J. Appl. Phys. 56, 947 (1984).

    Google Scholar 

  7. B. Pieraggi and R. A. Rapp,Acta Metall. 36, 1281 (1988).

    Google Scholar 

  8. B. Pieraggi, R. A. Rapp, F. J. J. VanLoo and J. P. Hirth,Acta Metall. Mater. 38, 1781 (1981).

    Google Scholar 

  9. J. P. Hirth,Metall. Trans. 22A, 1331 (1991).

    Google Scholar 

  10. A. Strawbridge and R. A. Rapp,J. Electrochem. Soc. 141, 1905 (1994).

    Google Scholar 

  11. J. J. Conzales, D. Oquab and B. Pieraggi, Proc. Krakow Conf. on High Temperature Corrosion, 1994.

  12. J. P. Hirth, B. Pieraggi, and R. A. Rapp,Acta Metall. Mater. 43, 1065 (1995).

    Google Scholar 

  13. F. A. Kroger,Chemistry of Imperfect Crystals (North-Holland, Amsterdam, 1964).

    Google Scholar 

  14. D. A. Goulden,Phil. Mag. 33, 393 (1976).

    Google Scholar 

  15. B. Pieraggi,Advances in Ceramics, M. F. Yan and A. H. Heuer (eds.)6, 117 (1983).

  16. R. C. Pond and J. P. Hirth,Solid State Phys. 47, 287 (1994).

    Google Scholar 

  17. M. Leseur and B. Pieraggi,J. Phys. C4, 135 (1983).

    Google Scholar 

  18. L. W. Hobbs, H. T. Sawhill, and M. T. Tinker,Trans. Jpn. Inst. Metals 24, 115 (1983).

    Google Scholar 

  19. B. Lamine, M. Leseur, and B. Pieraggi, Mater. Sci. Mono.28B, 135 (1985).

    Google Scholar 

  20. R. Ploc,J. Nucl. Materials 28, 48 (1968).

    Google Scholar 

  21. R. Herchel, N. N. Khoi, T. Homma, and W. W. Smeltzer,Oxid. Met. 4, 35 (1972).

    Google Scholar 

  22. F. Czerwinski and W. W. Smeltzer,J. Electrochem. 140, 1181 (1993).

    Google Scholar 

  23. L. Lattaud, D. Ciosmak, J. Bertrand, J. J. Heitzmann, A. Vadon, and C. Laruelle,Reactivity of Solids 1, 57 (1985).

    Google Scholar 

  24. P. Kofstad,High Temperature Corrosion 307 (1988).

  25. B. Pieraggi, F. Dabosi,J. Microsc. Spectrosc. Electron. 4, 595 (1979).

    Google Scholar 

  26. L. B. Pfeil, Improvements in Heat-Resisting Alloys, U.K. Patent No. 459848 (1937).

  27. D. P. Whittle and J. Stringer,Phil. Trans. Roy. Soc. A295, 309 (1980).

    Google Scholar 

  28. D. P. Moon,Mater. Sci. Technol. 5, 754 (1989).

    Google Scholar 

  29. J. Stringer,Mater. Sci. Eng. A120, 129 (1989).

    Google Scholar 

  30. J. J. Gonzales, D. Oquab, and B. Pieraggi, unpublished data.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pieraggi, B., Rapp, R.A. & Hirth, J.P. Role of interface structure and interfacial defects in oxide scale growth. Oxid Met 44, 63–79 (1995). https://doi.org/10.1007/BF01046723

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01046723

Key Words

Navigation