Skip to main content
Log in

Chromium Depletion in a Ni-30Cr Alloy During High-Temperature Oxidation

  • Original Paper
  • Published:
High Temperature Corrosion of Materials Aims and scope Submit manuscript

Abstract

Ni-30Cr alloy samples were oxidized at temperatures between 500 and 900 °C to investigate the link between the evolution of the microstructure and the chemical composition in the alloy substrate beneath a growing chromia layer. Before oxidation, a layer of ultrafine grains was observed between the surface and a thick lamellar layer. This structure was replaced by some larger recrystallized grains after oxidation. The growth kinetics of the recrystallized grains was described by a parabolic law with a kinetic constant following an Arrhenius law from 500 to 700 °C. For samples oxidized at 800 and 900 °C, all Cr profiles showed a gradient close to the shape predicted by Wagner models. In the samples oxidized between 500 and 700 °C, many Cr profiles showed a two-step shape, with the smaller Cr fraction in the step closer to the alloy/oxide interface. By considering a fast diffusion accelerated by grain boundaries in the zone of recrystallized grains, the two-step shape can be simulated by numerical resolution of diffusion problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. F. Cattant, D. Crusset, and D. Féron, Materials Today 11, 2008 (32).

    Article  CAS  Google Scholar 

  2. M. Perrut, P. Caron, M. Thomas, and A. Couret, Comptes Rendus Physique 19, 2018 (657).

    Article  CAS  Google Scholar 

  3. S. J. Zinkle and G. S. Was, Acta Materialia 61, 2013 (735).

    Article  CAS  Google Scholar 

  4. K. L. Murty and I. Charit, Journal of Nuclear Materials 383, 2008 (189).

    Article  CAS  Google Scholar 

  5. D. J. Young, High Temperature Oxidation and Corrosion of Metals, (Elsevier, Oxford, UK, 2008).

    Google Scholar 

  6. T. Hodgkiess, G. C. Wood, D. P. Whittle, and B. D. Bastow, Oxidation of Metals 12, 1978 (439).

    Article  CAS  Google Scholar 

  7. C. Wagner, Journal of the Electrochemical Society 99, 1952 (369).

    Article  CAS  Google Scholar 

  8. A. Nicolas, V. Barnier, E. Aublant, and K. Wolski, Scripta Materialia 65, 2011 (803).

    Article  CAS  Google Scholar 

  9. E. Schmucker, C. Petitjean, L. Martinelli, P.-J. Panteix, B. Lagha, and M. Vilasi, Corrosion Science 111, 2016 (467).

    Article  CAS  Google Scholar 

  10. D. P. Whittle, Corrosion Science 12, 1972 (869).

    Article  CAS  Google Scholar 

  11. B. D. Bastow, D. P. Whittle, and G. C. Wood, Oxidation of Metals 12, 1978 (413).

    Article  CAS  Google Scholar 

  12. R. Pillai, H. Ackermann, and K. Lucka, Corrosion Science 69, 2013 (181).

    Article  CAS  Google Scholar 

  13. D. P. Whittle, D. J. Evans, D. B. Scully, and G. C. Wood, Acta Metallurgica 15, 1967 (1421).

    Article  CAS  Google Scholar 

  14. Huang X. Défauts ponctuels dans Cr2O3 et oxydation d’un alliage Ni-30Cr à haute température : approches expérimentale et numérique. Université Grenoble Alpes [2020-....]; 2022.

  15. R. Pillai, A. Chyrkin, and W. J. Quadakkers, Oxidation of Metals 96, 2021 (385).

    Article  CAS  Google Scholar 

  16. D. P. Whittle, Oxidation of Metals 4, 1972 (171).

    Article  CAS  Google Scholar 

  17. G. L. Wulf, M. B. McGirr, and G. R. Wallwork, Corrosion Science 9, 1969 (739).

    Article  CAS  Google Scholar 

  18. F. Gesmundo and P. Y. Hou, Oxidation of Metals 59, 2003 (63).

    Article  CAS  Google Scholar 

  19. C. Desgranges, N. Bertrand, K. Abbas, D. Monceau, and D. Poquillon, Materials Science Forum 461–464, 2004 (481).

    Article  Google Scholar 

  20. N. Bertrand, C. Desgranges, M. Nastar, G. Girardin, D. Poquillon, and D. Monceau, Materials Science Forum 595–598, 2008 (463).

    Article  Google Scholar 

  21. C. Desgranges, F. Lequien, E. Aublant, M. Nastar, and D. Monceau, Oxidation of Metals 79, 2013 (93).

    Article  CAS  Google Scholar 

  22. Y. Ustinovshikov, B. Pushkarev, and I. Igumnov, Journal of Materials Science 37, 2002 (2031).

    Article  CAS  Google Scholar 

  23. D. P. Whittle, G. C. Wood, D. J. Evans, and D. B. Scully, Acta Metallurgica 15, 1967 (1747).

    Article  CAS  Google Scholar 

  24. T. Gheno, C. Desgranges, and L. Martinelli, Corrosion Science 173, 2020 108805.

    Article  CAS  Google Scholar 

  25. P. Nash, Bulletin of Alloy Phase Diagrams 7, 1986 (466).

    Article  CAS  Google Scholar 

  26. F. Xue and E. A. Marquis, Acta Material 240, 2022 118343.

    Article  CAS  Google Scholar 

  27. L. Bataillou, L. Martinelli, C. Desgranges, et al., Oxidation of Metals 93, 2020 (329).

    Article  CAS  Google Scholar 

  28. X. Huang, L. Martinelli, S. Bosonnet, P. C. M. Fossati, L. Latu-Romain, and Y. Wouters, Oxidation of Metals 96, 2021 (69).

    Article  CAS  Google Scholar 

  29. L. Karmazin, Materials Science and Engineering 54, 1982 (247).

    Article  CAS  Google Scholar 

  30. K. Monma, H. Suto, and H. Oikawa, Journal of Japanese Install Metal 28, 1964 (188).

    Google Scholar 

  31. P. Moulin, A. M. Huntz, and P. Lacombe, Acta Metallurgica 27, 1979 (1431).

    Article  CAS  Google Scholar 

  32. K. S. Rajeshwari, S. Sankaran, K. C. Hari Kumar, et al., Acta Material 195, 2020 (501).

    Article  Google Scholar 

  33. J. Růžičková and B. Million, Material Science Engineering 50, 1981 (59).

    Article  Google Scholar 

  34. T.-F. Chen, Y. Iijima, K. Hirano, and K. Yamauchi, Journal of Nuclear Materials 169, 1989 (285).

    Article  CAS  Google Scholar 

  35. T.-F. Chen, G. P. Tiwari, Y. Iijima, and K. Yamauchi, Materials Transactions 44, 2003 (40).

    Article  CAS  Google Scholar 

  36. D. D. Pruthi, M. S. Anand, and R. P. Agarwala, Journal of Nuclear Material 64, 1977 (206).

    Article  CAS  Google Scholar 

  37. T. Gheno, F. Jomard, C. Desgranges, and L. Martinelli, Materialia 3, 2018 (145).

    Article  CAS  Google Scholar 

  38. T. Gheno, F. Jomard, C. Desgranges, and L. Martinelli, Materialia 6, 2019 100283.

    Article  CAS  Google Scholar 

  39. B. Million, J. Růžičková, and J. Vřešťál, Journal of Material Science Engineering 72, 1985 (85).

    Article  CAS  Google Scholar 

  40. J. Čermák, Materials Science and Engineering: A, 148, 1991 (279).

    Article  Google Scholar 

  41. D. Prokoshkina, V. A. Esin, G. Wilde, and S. V. Divinski, Acta Mater. 61, 2013 (5188).

    Article  CAS  Google Scholar 

  42. G. Stechauner and E. Kozeschnik, Fe and Ni. Calphad. 47, 2014 (92).

    Article  CAS  Google Scholar 

  43. F. J. Humphreys and M. Hatherly, Recrystallization and related annealing phenomena, (Elsevier, Oxford, UK, 2004).

    Google Scholar 

  44. V. Randle and D. Horton, Scripta Metallurgica et Materialia 31, 1994 (891).

    Article  CAS  Google Scholar 

  45. M. C. Iordache, S. H. Whang, Z. Jiao, and Z. M. Wang, Nanostructured Mater. 11, 1999 (1343).

    Article  CAS  Google Scholar 

  46. L. Z. Zhou and J. T. Guo, Scripta Material 40, 1998 (139).

    Article  Google Scholar 

  47. L. G. Harrison, Trans Faraday Social 57, 1961 (1191).

    Article  CAS  Google Scholar 

  48. P. Heitjans and J. Kärger, Diffusion in Condensed Matter, (Springer, Berlin, Heidelberg, 2005).

    Book  Google Scholar 

  49. A. M. Glaeser and J. W. Evans, Acta Metallurgica 34, 1986 (1545–1552).

    Article  CAS  Google Scholar 

  50. Mathews JH, Fink KD. Numeric Method Using Matlab. Upper Saddle River, NJ: Pearson prentice hall; 2004.

  51. L. Latu-Romain, S. Mathieu, M. Vilasi, et al., Oxidation of Metals 88, 2016 (481).

    Article  Google Scholar 

  52. L. Latu-Romain, Y. Parsa, S. Mathieu, et al., Oxidation of Metals 86, 2016 (497).

    Article  CAS  Google Scholar 

  53. L. Latu-Romain, Y. Parsa, S. Mathieu, M. Vilasi, A. Galerie, and Y. Wouters, Corrosion Science 126, 2017 (238).

    Article  CAS  Google Scholar 

  54. L. Latu-Romain, Y. Parsa, M. Ollivier, et al., Materials at High Temperatures 35, 2018 (159–167).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the advice of Kévin Ginestar for oxidation tests and SEM observation, Florence Robaut for SEM-FIB preparation and Thomas Demonchaux for TEM-EDX analysis.

Author information

Authors and Affiliations

Authors

Contributions

X.H. wrote the main manuscript text and all authors reviewed the manuscript.

Corresponding author

Correspondence to Laure Martinelli.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 46 kb)

Appendix: Table of variables

Appendix: Table of variables

Variable

Unit

Description

\({d}_{\mathrm{g}}\) and \({d}_{\mathrm{g},0}\)

cm

Grain diameters at time \(t\) and at the initial time

\(D\) and \({D}_{0}\)

cm−2.s−1

Diffusion coefficient of Ni or Cr in volume, in dislocations or in grain boundaries and its pre-exponential factor

\(\widetilde{D}\)

cm−2.s−1

Interdiffusion coefficient in volume or in grain boundaries or apparent interdiffusion coefficient

\(e\)

cm

Thickness of the oxide layer

\({E}_{\mathrm{a}}\)

J.mol−1

Activation energy

\(f\)

dimensionless

Volume fraction of dislocations or grain boundaries

\({J}_{\mathrm{Cr},\mathrm{i}}\)

mol.cm−2.s−1

Flux of Cr at the alloy/oxide interface

\({k}_{\mathrm{d}}\)

cm3.s−1

Kinetic constant for recovery

\(k\), \({k}_{\mathrm{p}}\) and \({k}_{\mathrm{c}}\)

cm−2.s−1

Parabolic kinetic constants for grain growth, oxidation and recession processes, respectively

\(n\)

dimensionless

Exponent of the kinetic law

\({N}_{\mathrm{Cr}}\)

at%

Molar fraction of Cr at the depth \(x\), at the interface or in the bulk

\(s\)

dimensionless

Segregation factor

\(t\)

s

Time

\(T\)

K

Temperature

\({V}_{\mathrm{m}}\)

cm3.mol−1

Molar volumes of the Ni-30Cr alloy or the Cr2O3 oxide

\(x\) and \({\Delta x}_{\mathrm{m}}\)

cm

Depth in the alloy from the alloy/oxide interface and recession depth, respectively

\(\delta\)

cm

Grain boundary width

\({\lambda }_{\mathrm{vol}}\)

cm

Characteristic length of volume diffusion

\({\rho }_{\mathrm{d}}\) and \({\rho }_{\mathrm{d},0}\)

cm−2

Density of dislocations at time \(t\) and at the initial time

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, X., Martinelli, L., Bosonnet, S. et al. Chromium Depletion in a Ni-30Cr Alloy During High-Temperature Oxidation. High Temperature Corrosion of mater. 100, 745–773 (2023). https://doi.org/10.1007/s11085-023-10198-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-023-10198-8

Keywords

Navigation