Skip to main content
Log in

Predicting Oxide Spallation from Sulphur-Contaminated Oxide/Metal Interfaces

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The deleterious effect of sulphur contamination on oxide spallation has been well demonstrated experimentally. The present paper attempts to account for this using finite-element modelling of crack growth along a sulphur-contaminated interface during cooling. Sulphur reduces the intrinsic work of adhesion, Wad, of this interface and, it is suggested, this is equivalent to reducing the characteristic fracture stress for that interface. It is shown that this approach does predict the typical trends in S-bearing alloys of spallation after shorter exposure times. A significant result is that the effective fracture energy for spallation, γeff, reduces with increasing sulphur contamination but is always 1–2 orders of magnitude larger than Wad. This high value for γeff arises because of creep relaxation within the alloy. Sulphur does not affect this process directly but reduces the extent of creep relaxation in a cooling transient by initiating spallation at a smaller value of temperature drop.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A. W. Funkenbusch, J. W. Smeggil and N. S. Bornstein, Metallurgical Transactions 16A, 1985 (1164).

    CAS  Google Scholar 

  2. I. Melar and D. G. Lees, Materials Science and Technology 4, 1988 (455).

    Google Scholar 

  3. P. Fox, D. G. Lees and G. W. Lorimer, Oxidation of Metals 36, 1991 (491).

    Article  CAS  Google Scholar 

  4. P. Y. Hou and J. Stringer, Oxidation of Metals 38, 1992 (323).

    Article  CAS  Google Scholar 

  5. W. Y. Lee, Y. Zhang, I. G. Wright, B. A. Pint and P. K. Liaw, Metallurgical and Materials Transactions 29, 1998 (833).

    Article  Google Scholar 

  6. L. Rivoaland, V. Maurice, P. Josso, M. P. Bacos and P. Marcos, Oxidation of Metals 60, 2008 (137).

    Article  Google Scholar 

  7. P. Y. Hou, Annual Review of Materials Research 38, 2008 (275).

    Article  CAS  Google Scholar 

  8. D. Naumenko, W. J. Quadakkers, V. Guttmann, et al., in Lifetime Modelling of High Temperature Corrosion Processes, eds. M. Schütze, et al. (Maney Publishing, London, 2001), pp. 66–82.

    Google Scholar 

  9. H. Al-Badairy, D. Naumenko, J. LeCoze, G. J. Tatlock and W. J. Quadakkers, Materials at High Temperatures 20, 2003 (405).

    Article  CAS  Google Scholar 

  10. A. Strawbridge, H. E. Evans and C. B. Ponton, Materials Science Forum 251–254, 1997 (365).

    Article  Google Scholar 

  11. B. Gleeson and M. A. Harper, in Lifetime Modelling of High Temperature Corrosion Processes, eds. M. Schütze, et al. (Maney Publishing, London, 2001), pp. 167–177.

    Google Scholar 

  12. K. L. Luthra and C. L. Briant, Oxidation of Metals 26, 1986 (397).

    Article  CAS  Google Scholar 

  13. I. Rouzou, R. Molins, L. Rémy and F. Jomard, Materials Science Forum 461–464, 2004 (101).

    Article  Google Scholar 

  14. E. Fedorova, D. Monceau and D. Oquab, Corrosion Science 52, 2010 (3932).

    Article  CAS  Google Scholar 

  15. J. L. Smialek, Metallurgical Transactions 22A, 1991 (739).

    CAS  Google Scholar 

  16. J. L. Smialek, D. T. Jayne, J. C. Schaeffer and W. H. Murphy, Thin Solid Films 253, 1994 (285).

    Article  CAS  Google Scholar 

  17. G. H. Meier, F. S. Pettit and J. L. Smialek, Werkstoffe und Korrosion 46, 1995 (1).

    Article  Google Scholar 

  18. P. Y. Hou, Oxidation of Metals 52, 1999 (337).

    Article  CAS  Google Scholar 

  19. X. Han, Y. Zhang and H. Xu, Chemical Physics Letters 378, 2003 (269).

    Article  CAS  Google Scholar 

  20. I. J. Bennett, J. M. Kranenburg and W. G. Sloof, Journal of the American Ceramic Society 88, 2005 (2209).

    Article  CAS  Google Scholar 

  21. E. A. A. Jarvis, A. Christensen and E. A. Carter, Surface Science 487, 2001 (55).

    Article  CAS  Google Scholar 

  22. K. M. Carling and E. A. Carter, Acta Materialia 55, 2007 (2791).

    Article  CAS  Google Scholar 

  23. Y. Jiang, J. R. Smith and A. G. Evans, Applied Physics Letters 92, 2008 (141918).

    Article  Google Scholar 

  24. S. J. Bull, Tribology International 30, 1997 (491).

    Article  CAS  Google Scholar 

  25. J. Mougin, M. Dupeux, A. Galerie and L. Antoni, Materials Science and Technology 18, 2002 (1217).

    Article  CAS  Google Scholar 

  26. J. Mougin, M. Dupeux, L. Antoni and A. Galerie, Materials Science and Engineering A359, 2003 (44).

    CAS  Google Scholar 

  27. A. Galerie, F. Toscan, E. N’Dah, K. Przybylski, Y. Wouters and M. Dupeux, Materials Science Forum 461–464, 2004 (631).

    Article  Google Scholar 

  28. Y. F. Liu, F. Kagawa and A. G. Evans, Acta Materialia 56, 2008 (43).

    Article  CAS  Google Scholar 

  29. H. E. Evans, Materials Science and Technology 4, 1988 (415).

    CAS  Google Scholar 

  30. K. Bouhanek, D. Oquab and B. Pieraggi, Materials Science Forum 251–254, 1997 (33).

    Article  Google Scholar 

  31. S. Baleix, G. Bernhart and P. Lours, Materials Science Forum 369–372, 2001 (539).

    Article  Google Scholar 

  32. H. E. Evans, S. Osgerby and S. R. J. Saunders, in John Stringer Symposium on High Temperature Corrosion, eds. P. F. Tortorelli, et al. (ASM International, Materials Park, 2003), pp. 122–130.

    Google Scholar 

  33. H. E. Evans, A. Strawbridge, R. A. Carolan and C. B. Ponton, Materials Science and Engineering A225, 1997 (1).

    CAS  Google Scholar 

  34. H. E. Evans and M. P. Taylor, Surface and Coatings Technology 94–95, 1997 (27).

    Article  Google Scholar 

  35. C. Sarioglu, M. J. Stiger, J. R. Blachere, R. Janakiraman, E. Schumann, A. Ashary, F. S. Pettit and G. H. Meier, Materials and Corrosion 51, 2000 (358).

    Article  CAS  Google Scholar 

  36. V. Kolarik, H. Fietzek, M. Juez-Lorenzo and M. Groß, Materials Science Forum 369–372, 2001 (547).

    Article  Google Scholar 

  37. S. Gray, K. Berriche-Bouhanek and H. E. Evans, Materials Science Forum 461–464, 2004 (755).

    Article  Google Scholar 

  38. V. K. Tolpygo, J. R. Dryden and D. R. Clarke, Acta Materialia 46, 1998 (927).

    Article  CAS  Google Scholar 

  39. U. R. Evans, An Introduction to Metallic Corrosion, (Edward Arnold Publishers, London, 1948), pp. 194–195.

    Google Scholar 

  40. H. E. Evans and R. C. Lobb, Corrosion Science 24, 1984 (209).

    Article  CAS  Google Scholar 

  41. H. E. Evans, G. P. Mitchell, R. C. Lobb and D. R. J. Owen, Proceedings of the Royal Society of London 440, 1993 (1).

    Article  CAS  Google Scholar 

  42. S. Osgerby, K. Berriche-Bouhanek and H. E. Evans, Materials Science and Engineering A412, 2005 (182).

    CAS  Google Scholar 

  43. J. M. A. Cesar de Sa, and D. R. J. Owen, Computer Aided Modelling of Grain Boundary Failure Mechanisms, Report Number C/R449/83, Department of Civil Engineering, University College Swansea, UK (1983).

  44. P. Y. Hou and K. Priimak, Oxidation of Metals 63, 2005 (113).

    Article  CAS  Google Scholar 

  45. H. Hindum and D. P. Whittle, Oxidation of Metals 18, 1983 (245).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. E. Evans.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Evans, H.E. Predicting Oxide Spallation from Sulphur-Contaminated Oxide/Metal Interfaces. Oxid Met 79, 3–14 (2013). https://doi.org/10.1007/s11085-012-9322-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-012-9322-6

Keywords

Navigation