Skip to main content
Log in

Analysis of the Reactive Element Effect on the Oxidation of Ceria Doped Nickel

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

An Erratum to this article was published on 13 September 2013

Abstract

The effects of external doping with CeO2 on the oxidation of nickel have been evaluated. The materials studied were pure Ni and Ni with the surface doped with CeO2 by pulsed laser deposition. The oxidation kinetics were measured using thermogravimetric analysis. The oxidation microstructures were observed by scanning electron microscopy and cross-sectional transmission electron microscopy. Compositional analysis was performed with energy dispersive X-ray analysis and sputtering neutrals mass spectrometry. Phase identification was performed using X-ray diffraction. Doping with CeO2 resulted in a significant decrease in the NiO growth rate at intermediate temperatures, e.g. 800 °C. The scales on doped Ni grew primarily inward whereas those on the undoped Ni grew primarily outward. Deposition of the CeO2 dopant onto Ni with a thin, preformed NiO layer produced a similar reduction in the subsequent NiO growth rate. The CeO2 dopant did not reduce the growth rate at high temperature (1,300 °C). The results indicate that the CeO2 dopant influences grain boundary transport in the NiO. Mechanisms are presented to attempt to describe the above observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. R. W. Jackson, J. P. Leonard, F. S. Pettit and G. H. Meier, Solid State Ionics 179, 2111 (2008).

    Article  CAS  Google Scholar 

  2. R. W. Jackson, J. P. Leonard, L. Niewolek, W. J. Quadakkers, F. S. Pettit and G. H. Meier, Materials Science Forum 595–598, 1057 (2008).

    Article  Google Scholar 

  3. A. A. Moosa, S. J. Rothman and L. J. Nowicki, Oxidation of Metals 24, 115 (1985).

    Article  CAS  Google Scholar 

  4. A. A. Moosa and S. J. Rothman, Oxidation of Metals 24, 133 (1985).

    Article  CAS  Google Scholar 

  5. R. Haugsrud, A. E. Gunnaes and O. Nilsen, Oxidation of Metals 3, (4), 215 (2003).

    Article  Google Scholar 

  6. R. Haugsrud, Corrosion Science 45, 1289 (2003).

    Article  CAS  Google Scholar 

  7. G. M. Ecer and G. H. Meier, Oxidation of Metals 13, 159 (1979).

    Article  CAS  Google Scholar 

  8. G. M. Ecer, R. B. Singh and G. H. Meier, Oxidation Metals l8, 53 (1982).

    Google Scholar 

  9. P. Y. Hou and J. Stringer, Materials Science and Engineering A202, 1 (1995).

    CAS  Google Scholar 

  10. B. Pieraggi and R. A. Rapp, Journal of Electrochemical Society 140, 2844 (1993).

    Article  CAS  Google Scholar 

  11. B. Pieraggi, R. A. Rapp and J. P. Hirth, Oxidation of Metals 44, 63 (1995).

    Article  CAS  Google Scholar 

  12. A. Strawbridge and R. A. Rapp, Journal of the Electrochemical Society 141, 1905 (1994).

    Article  CAS  Google Scholar 

  13. J. P. Hirth and T. E. Mitchell, Acta Materialia 56, 5701 (2008).

    Article  CAS  Google Scholar 

  14. W. Bock, M. Kopnarsk and H. Oechsner, Fresenius’ Journal of Analytical Chemistry 353, 510 (1995).

    Article  CAS  Google Scholar 

  15. W. J. Quadakkers, A. Elschner, W. Speier and H. Nickel, Applied Surface Science 52, 271 (1991).

    Article  CAS  Google Scholar 

  16. N. Solak, M. Zinkevich, and F. Aldinger, Fuel Cells 6, 87 (2006).

  17. M. Mogensen, N. M. Sammes and G. A. Tompsett, Solid State Ionics 129, 63 (2000).

    Article  CAS  Google Scholar 

  18. M. Kamiya, E. Shimada, Y. Ikuma, M. Komatsu and H. Haneda, Journal of the Electrochemical Society 147, 1222 (2000).

    Article  CAS  Google Scholar 

  19. A. Atkinson, R. I. Taylor, and A. E. Hughes, Philosophical Magazine, A45, 823 (1982).

    Google Scholar 

  20. A. Atkinson, D. P. Moon, D. W. Smart and R. I. Taylor, Journal of Materials Science 21, 1747 (1986).

    Article  CAS  Google Scholar 

  21. R. Haugsrud, Corrosion Science 44, 1569 (2002).

    Article  CAS  Google Scholar 

  22. W. C. Johnson, Metallurgical Transaction A 8A, 1413 (1977).

    Article  CAS  Google Scholar 

  23. D. M. Duffy and P. W. Tasker, Philosophical Magazine A54, 759 (1986).

    Google Scholar 

  24. R. Haugsrud, A. E. Gunnaes and C. R. Simon, Oxidation of Metals 56, 453 (2001).

    Article  CAS  Google Scholar 

  25. B. A. Pint, Oxidation of Metals 45, 1 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support of this study by the Office of Naval Research through Grant No. N00014-09-1-0564 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. H. Meier.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s11085-013-9441-8.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jackson, R.W., Leonard, J.P., Niewolak, L. et al. Analysis of the Reactive Element Effect on the Oxidation of Ceria Doped Nickel. Oxid Met 78, 197–210 (2012). https://doi.org/10.1007/s11085-012-9300-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-012-9300-z

Keywords

Navigation