Skip to main content
Log in

Spallation Behavior of Thermally Grown Nickel Oxide on Nickel

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Thermally grown oxide scales are often under compressive residual stresses, especially upon cooling, which can lead to spontaneous spallation and a loss of their protectiveness. This study uses nickel oxide formed on different purity of nickel as an example to investigate the spallation process. Samples oxidized after different times between 800 and 1100 °C were observed during cooling. The oxide scale buckled and spalled after reaching a critical thickness that depended on oxidation temperatures, substrate thickness, and metal purity. The observed buckling was only a secondary process that followed scale delamination under local tensile stresses at sample edges or corners. When the delamination eventually extended over a large enough area on the face of the specimen, the scale above it buckled, driven by the residual compressive stress in the oxide. Growth of the buckles took place by crack extension along regions of high pore densities in the oxide scale. The development of pores in the oxide layer, which depended strongly on substrate impurity levels, was found to be the most important factor controlling failures of the NiO scales. Sulfur segregated on pore surfaces, whereas TEM studies showed no S at NiO/Ni interfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. J. W. Hutchinson and Z. Suo, Advances in Applied Mechanics 29, 63 (1991).

    Article  Google Scholar 

  2. S. Timoshenko and J. M. Gere, Theory of Elastic Stability (Engineering Society Monograph, New York, 1936).

    Google Scholar 

  3. A. G. Evans and J. W. Hutchinson, International Journal of Solids and Structures 20, 455 (1984).

    Article  Google Scholar 

  4. A. G. Evans, G. B. Crumley, and R. E. Demaray, Oxidation of Metals 20, 193 (1983).

    Article  Google Scholar 

  5. H. E. Evans and R. C. Lobb, Corrosion Science 24, 209 (1984).

    Article  CAS  Google Scholar 

  6. P. Kofstad, High Temperature Corrosion (Elsevier Applied Science, Amsterdam, 1988).

    Google Scholar 

  7. G. C. Wood, I. G. Wright, and J. M. Ferguson, Corrosion Science 5, 645 (1965).

    Article  CAS  Google Scholar 

  8. A. Atkinson, R. I. Taylor, and P. D. Goode, Oxidation of Metals 13, 519 (1979).

    Article  CAS  Google Scholar 

  9. H. T. Sawhill, L. W. Hobbs, and M. T. Tinker, Advanced Ceramics 6, 128 (1983).

    CAS  Google Scholar 

  10. B. M. Vasyutinskiy and G. N. Kartmazov, Fiz. Metal Metalloved 15, 132 (1963).

    Google Scholar 

  11. D. P. Moon, Oxidation of Metals 31, 71 (1989).

    Article  CAS  Google Scholar 

  12. C. K. Kim, S. K. Fan, and L. W. Hobbs, in Microscopy of Oxidation, eds. M. J. Bennett and G. W. Lorimer (Institute of Metals, 1991), pp. 374–380.

  13. A. W. Harris and A. Atkinson, Oxidation of Metals 34, 229 (1990).

    Article  CAS  Google Scholar 

  14. R. Peraldi, D. Monceau, and Pieraggi, in High Temperature Materials, special issue of High Temperature Corrosion and Protection 2000, ed. T. Narita, T. Maruyama and S. Taniguchi (2000), pp. 67–72.

  15. P. Y. Hou and R. M. Cannon, Materials Science Forum 251–254, 325 (1997).

    Article  Google Scholar 

  16. G. V. Samsonov, in The Oxide Handbook (Pub. IFI/Plenum, 1981).

  17. P. Y. Hou, Annual Review of Materials Research 38, 275 (2008).

    Article  CAS  Google Scholar 

  18. P. Y. Hou and J. Stringer, Oxidation of Metals 38, 323 (1992).

    Article  CAS  Google Scholar 

  19. W. Przybilla and M. Schutze, Oxidation of Metals 58, 103 (2002).

    Article  CAS  Google Scholar 

  20. A. G. Evans and B. J. Dalgleish, Acta Metallurgica et Materialia 40, S295 (1992).

    Article  CAS  Google Scholar 

  21. J. M. McNaney, R. M. Cannon, and R. O. Ritchie, Acta Materialia 44, 4713 (1996).

    Article  CAS  Google Scholar 

  22. N. P. O’Dowd, M. G. Stout, and C. F. Shih, Philosophical Magazine A66, 1037 (1992).

    ADS  Google Scholar 

  23. R. M. Cannon, Advanced Ceramics 10, 818 (1984).

    CAS  Google Scholar 

  24. M. I. Manning, Corrosion Science 21, 301 (1981).

    Article  CAS  Google Scholar 

  25. R. Hales and A. C. Hill, Corrosion Science 12, 843 (1972).

    Article  CAS  Google Scholar 

  26. J. K. Wright, R. L. Williamson, and R. M. Cannon, Materials Science and Engineering A230, 202 (1997).

    CAS  Google Scholar 

  27. P. Y. Hou, R. M. Cannon, H. Zhang, and R. L. Williamson, Interface convolution and its effect on alumina scale spallation, 190th ECS fall meeting, 6–11 Oct, 1996, San Antonio, TX, to be published in Fundamentals of High Temperature Corrosion VI, eds. D. A. Shores and P. Y. Hou (Electrochemical Society, Pennington, PA, 1997).

  28. V. K. Tolpygo and D. R. Clarke, Materials Science and Engineering A278, 151 (2000).

    CAS  Google Scholar 

  29. S.-H. Song and P. Xiao, Scripta Medica 44, 601 (2001).

    Article  CAS  Google Scholar 

  30. S. Mrowec, Corrosion Science 7, 563 (1967).

    Article  CAS  Google Scholar 

  31. G. B. Gibbs and R. Hales, Corrosion Science 17, 487 (1976).

    Article  Google Scholar 

  32. P. Kofstad, Oxidation of Metals 24, 265 (1985).

    Article  CAS  Google Scholar 

  33. D. Caplan, R. J. Hussey, G. I. Sproule, and M. J. Graham, Oxidation of Metals 14, 279 (1980).

    Article  CAS  Google Scholar 

  34. L. Z. Mezey and J. Giber, Japan Journal of Applied Physics 21, 1569 (1982).

    Article  ADS  CAS  Google Scholar 

  35. M. D. Thouless, Journal of the American Ceramic Society 76, 2936 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors would like to thank Mr. H. Zhang and Mr. S. Kekare for their technical assistance, and for Dr. Xiaofeng Zheng for the TEM analysis. This work was supported by the Electric Power Institute under contract No. WO 8041-05, and by the U.S. Department of Energy under Contract No. DE-AC03-76SF00098.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Y. Hou.

Additional information

R. M. Cannon: deceased.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hou, P.Y., Cannon, R.M. Spallation Behavior of Thermally Grown Nickel Oxide on Nickel. Oxid Met 71, 237–256 (2009). https://doi.org/10.1007/s11085-009-9139-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-009-9139-0

Keywords

Navigation