Skip to main content
Log in

Comparison of the Isothermal Oxidation Behavior of As-Cast Cu–17%Cr and Cu–17%Cr–5%Al Part I: Oxidation Kinetics

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The isothermal oxidation kinetics of as-cast Cu–17%Cr and Cu–17%Cr–5%Al in air were studied between 773 and 1,173 K under atmospheric pressure. These observations reveal that Cu–17%Cr–5%Al oxidizes at significantly slower rates than Cu–17%Cr. The rate constants for the alloys were determined from generalized analyses of the data without an a priori assumption of the nature of the oxidation kinetics. Detailed analyses of the isothermal thermogravimetric weight change data revealed that Cu–17%Cr exhibited parabolic oxidation kinetics with an activation energy of 165.9 ± 9.5 kJ/mol. In contrast, the oxidation kinetics for the Cu–17%Cr–5%Al alloy exhibited a parabolic oxidation kinetics during the initial stages followed by a quartic relationship in the later stages of oxidation. Alternatively, the oxidation behavior of Cu–17%Cr–5%Al could be better represented by a logarithmic relationship. The parabolic rate constants and activation energy data for the two alloys are compared with literature data to gain insights on the nature of the oxidation mechanisms dominant in these alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. All compositions reported in this paper are in wt.% unless otherwise noted.

  2. This magnitude of A includes the sum of the areas of the two faces, the area of the outer edge of the specimen and the area of the specimen edge at the hole.

  3. It is noted that t = 0 in this paper corresponds to the time at which the test temperature is attained.

  4. In this paper, the subscripts ‘m’, ‘p’ and ‘q’ denote generic, parabolic and quartic relationships, respectively.

  5. The parabolic rate constants show in Fig. 7 were determined from relatively short term tests lasting less than 24 h in most of the investigations. As shown in this investigation, oxidation to longer times can result in a change in the oxidation kinetics especially in Cu alloyed with Al.

  6. The terms “single” and “double” layers refer to the ideal scale morphologies consisting of either only a Cu2O layer or a combination of an outer CuO layer over an inner Cu2O layer, respectively.

References

  1. H. J. Kasper, in S. F. Morea and S. T. Wu (eds.), Advanced High Pressure O 2 /H 2 Technology, NASA CP 2372 (George C. Marshall Space Flight Center, Huntsville, AL, 1985), p. 36.

  2. D. B. Morgan and A. C. Kobayashi, Main Combustion Chamber and Cooling Technology Study – Final Report, NASA CR 184345 (NASA Marshall Space Flight Center, Huntsville, AL, 1989).

  3. L. Ogbuji and D. L. Humphrey, Oxidation of Metals 60, 271 (2003).

    Article  CAS  Google Scholar 

  4. E. Scheil, Zeit Für Metallkde 29, 209 (1937); translated version in NACA-TM-1338, National Advisory Committee for Aeronautics, Washington, DC (1952).

  5. H. Nishimura, Suyiokwai-shi 9, 655 (1938).

    CAS  Google Scholar 

  6. G. Valensi, Pittsburgh International Conference on Surface Reactions (Electrochemical Society, Pittsburgh, PA, 1948).

    Google Scholar 

  7. R. F. Tylecote, Journal of Institute Metals 78, 259 (1950–51).

    Google Scholar 

  8. R. F. Tylecote, Journal of Institute Metals 78, 301 (1950–51).

    Google Scholar 

  9. R. F. Tylecote, Journal of Institute Metals 78, 327 (1950–51).

    Google Scholar 

  10. D. W. Bridges, J. P. Baur, G. S. Baur, and W. M. Fassell, Journal of Electrochemical Society 103, 475 (1956).

    Article  CAS  Google Scholar 

  11. P. Kofstad, Nature 179, 1362 (1957).

    Article  CAS  Google Scholar 

  12. J. A. Sartell and C. H. Li, Transactions of the American Society of Metals 55, 58 (1962).

    Google Scholar 

  13. L. Czerski, S. Mrowec, and T. Werber, Roczniki Chemii 38, 643 (1964).

    CAS  Google Scholar 

  14. P. Kofstad, High-Temperature Oxidation of Metals (Wiley, New York, 1966).

    Google Scholar 

  15. O. Kubaschewski and B. E. Hopkins, Oxidation of Metals and Alloys (Butterworths, London, UK, 1967).

    Google Scholar 

  16. S. Mrowec and A. Stoklosa, Oxidation of Metals 3, 291 (1971).

    Article  CAS  Google Scholar 

  17. P. C. Donovan and C. J. Barton, Metall. Trans 4, 1765 (1973).

    Article  CAS  Google Scholar 

  18. F. Gesmundo, C. De Asmundis, and S. Merlo, Werkstoffe Und Korrosion - Materials and Corrosion 30, 114 (1979).

    Article  CAS  Google Scholar 

  19. J. H. Park and K. Natesan, Oxidation of Metals 39, 411 (1993).

    Article  CAS  Google Scholar 

  20. Y. Niu, F. Gesmundo, F. Viani, and D. L. Douglass, Oxidation of Metals 48, 357 (1997).

    Article  CAS  Google Scholar 

  21. K. T. Chiang, G. H. Meier, and F. S. Pettit, in Microscopy of Oxidation, eds., S. B. Newcombe and J. A. Little (The Institute of Metals, London, UK, 1997), p. 453.

    Google Scholar 

  22. Y. Zhu, K. Mimura, J. W. Lim, M. Isshiki, and Q. Jiang, Metallurgical and Materials Transactions A 37A, 1231 (2006).

    CAS  Google Scholar 

  23. F. Gesmundo, Y. Niu, F. Viania, and D. L. Douglass, Oxidation of Metals 49, 147 (1998).

    Article  CAS  Google Scholar 

  24. G. Y. Fu, Y. Niu, and F. Gesmundo, Corrosion Science 45, 559 (2003).

    Article  CAS  Google Scholar 

  25. L. U. Ogbuji, Surface and Coatings Technology 197, 327 (2005).

    Article  CAS  Google Scholar 

  26. D. J. Chakrabarti and D. E. Laughlin, Bulletin of Alloy Phase Diagrams 5, 59 (1984).

    Article  CAS  Google Scholar 

  27. T. B. Massalski, H. Okamoto, and P. R. Subramanian (eds.), Binary Alloy Phase Diagrams (ASM International, Materials Park, Cleveland, OH, 1990).

    Google Scholar 

  28. K. T. Chiang, P. D. Krotz, and J. L. Yuen, Surface and Coatings Technology 76, 14 (1995).

    Article  Google Scholar 

  29. K. T. Chiang and J. P. Ampaya, Surface and Coatings Technology 78, 243 (1996).

    Article  CAS  Google Scholar 

  30. T. A. Wallace, R. K Clark, and K. T. Chiang, Journal of Spacecraft and Rockets 35, 546 (1998).

    Article  CAS  Google Scholar 

  31. S. V. Raj, L. J. Ghosn, C. Robinson, and D. Humphrey, Materials Science & Engineering A 457, 300 (2007).

    Article  CAS  Google Scholar 

  32. S. V. Raj, Unpublished research (NASA Glenn Research Center, Cleveland, OH, 2003).

  33. J. S. Dunn, Journal of Institute Metals 46, 25 (1934).

    Google Scholar 

  34. K. W. Frohlich, Zeitschrift fur Metallkunde 28, 368 (1936).

    CAS  Google Scholar 

  35. L. E. Price and G. J. Thomas, Journal of Institute Metals 63, 21 (1938).

    Google Scholar 

  36. J. P. Dennison and A. Preece, Journal of Institute Metals 81, 229 (1952).

    Google Scholar 

  37. J. C. Blade and A. Preece, Journal of Institute Metals 88, 427 (1959).

    Google Scholar 

  38. M. D. Saderson and J. C. Scully, Oxidation of Metals 3, 59 (1971).

    Article  Google Scholar 

  39. K. Hauffe and E. Ofulue, Werkstoffe und Korrosion – Materials and Corrosion 23, 351 (1972).

    Article  CAS  Google Scholar 

  40. G. Plascencia, T. Utigard, and T. Marín, Journal of Metals 57, 80 (2005).

    CAS  Google Scholar 

  41. J. L. Smialek, G. H. Meier, in Superalloys II, eds. C. T. Sims, N. S. Stoloff, and W. C. Hagel (Wiley, New York, 1987) p. 293.

  42. G. Ghosh, in Handbook of Ternary Alloy Phase Diagrams, eds. G. Petzow and G. Effenberg, Vol. 4 (VCH Publishers, New York, 1991), p. 311.

  43. B. Grushko, E. Kowalska-Strzeciwilk, B. Przepiorzynski, and M. Surowiec, Journal of Alloys and Compounds 417, 121 (2006).

    Article  CAS  Google Scholar 

  44. Y. Niu, S. Y. Wang, and F. Gesmundo, Oxidation of Metals 65, 285 (2006).

    Article  CAS  Google Scholar 

  45. S. Y. Wang, F. Gesmundo, W. T. Wu, and Y. Niu, Scripta Materialia 54, 1563 (2006).

    Article  CAS  Google Scholar 

  46. S. V. Raj, C. Barrett, J. Karthikeyan, and R. Garlick, Surface and Coatings Technology 201, 7222 (2007).

    Article  CAS  Google Scholar 

  47. W. J. Moore, Y. Ebisuzaki, and J. A. Sluss, Journal of Physical Chemistry 62, 1438 (1958).

    Article  CAS  Google Scholar 

  48. Y. Zhu, K. Mimura, and M. Isshiki, Oxidation of Metals 62, 207 (2004).

    Article  CAS  Google Scholar 

  49. W. Kai, G. W. Fan, P. C. Chen, and Y. T. Lin, Oxidation of Metals 61, 439 (2004).

    Article  CAS  Google Scholar 

  50. H. Hindam and D. P. Whittle, Oxidation of Metals 18, 245 (1982).

    Article  CAS  Google Scholar 

  51. A. F. Wright and J. S. Nelson, Journal of Applied Physics 92, 5849 (2002).

    Article  CAS  Google Scholar 

  52. R. H. Doremus, Journal of Applied Physics 95, 3217 (2004).

    Article  CAS  Google Scholar 

  53. H. J. Frost and M. F. Ashby, Deformation-Mechanism Maps: The Plasticity and Creep of Metals and Ceramics (Pergamon Press, Oxford, 1982), p. 99.

Download references

Acknowledgements

The author thanks Mr. Donald Humphrey for conducting the isothermal oxidation tests and Mr. Dereck Johnson for conducting chemical analyses of the specimens.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Raj.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raj, S.V. Comparison of the Isothermal Oxidation Behavior of As-Cast Cu–17%Cr and Cu–17%Cr–5%Al Part I: Oxidation Kinetics. Oxid Met 70, 85–102 (2008). https://doi.org/10.1007/s11085-008-9110-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-008-9110-5

Keywords

Navigation