Skip to main content
Log in

Stability, modulation instability, and analytical study of the confirmable time fractional Westervelt equation and the Wazwaz Kaur Boussinesq equation

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

This study delves into the analytical exploration of two pivotal equations, the confirmable Westervelt equation, relevant in acoustic nonlinear phenomena for applications like medical imaging and therapy, and the (2 + 1)-dimensional Wazwaz Kaur Boussinesq equation, providing insights into the unique characteristics of solitons and enriching our understanding of wave dynamics across various optical systems. Utilizing the potent (\({G}^{\prime}/G\),\(1/G\))-expansion analytical method, we construct diverse wave structures and unveil a spectrum of soliton solutions, ranging from trigonometric and hyperbolic functions to rational expressions. Extensive validation using Mathematica software guarantees precision, while dynamic visual representations vividly portray a spectrum of soliton solutions. These solutions encompass a variety of patterns, such as bright solitons, kink solitons with periodic patterns, bell-shaped structures, parabolic structures, and hyperbolic formations. These solutions hold importance in acoustic image processing and the study of wave dynamics across different optical systems. They aid in comprehending the propagation of light in optical systems, thereby providing valuable insights that drive advancements in optical technology and communication. We also investigate modulation instability of the Wazwaz Kaur Boussinesq equation and stability analysis of the confirmable Westervelt equation. Our mentioned expansion scheme proves versatile and applicable across a diverse array of mathematical and physical challenges, showcasing its utility in producing such solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this article.

References

  • Abdel-Gawad, H.I., Osman, M.: On shallow water waves in a medium with time-dependent dispersion and nonlinearity coefficients. J. Adv. Res. 6, 593–599 (2015)

    Article  Google Scholar 

  • Babajanov, B., Abdikarimov, F.: The application of the functional variable method for solving the loaded non-linear evaluation equations. Front. Appl. Math. Stat. 8, 1–9 (2022)

    Article  Google Scholar 

  • Bekir, A., San, S.: J. Mod. Math. Front. Sept 1, 5–9 (2012)

    Google Scholar 

  • Bilal, M., Shafqat-Ur-Rehman, J.A.: Analysis in fiber Bragg gratings with Kerr law nonlinearity for diverse optical soliton solutions by reliable analytical techniques. Mod. Phys. Lett. B (2022a). https://doi.org/10.1142/S0217984922501226

    Article  Google Scholar 

  • Bilal, M., Seadawy, A.R., Younis, M., Rizvi, S.T.R., El-Rashidy, K., Mahmoud, S.F.: Analytical wave structures in plasma physics modelled by Gilson-Pickering equation by two integration norms. Results Phys. 23, 103959 (2021)

    Article  Google Scholar 

  • Bilal, M., Ur-Rehman, S., Ahmad, J.: Opt. Quantum Electron. 53, 1–22 (2021)

    Article  Google Scholar 

  • Bilal, M., Rehaman, S.U., Ahmad, J.: Dispersive solitary wave solutions for the dynamical soliton model by three versatile analytical mathematical methods. Eur. Phys. J. plus (2022). https://doi.org/10.1140/epjp/s13360-022-02897-z

    Article  Google Scholar 

  • Bilal, M., Ur-Rehman, S., Ahmad, J.: Dynamics of optical and multiple lump solutions to the fractional coupled nonlinear Schrödinger equation. Opt. Quantum Electron. 54, 1–24 (2022b)

    Google Scholar 

  • Bilal, M., Ur-Rehman, S., Ahmad, J.: Dynamical nonlinear wave structures of the predator–prey model using conformable derivative and its stability analysis. Pramana J. Phys. (2022c). https://doi.org/10.1007/s12043-022-02378-z

    Article  Google Scholar 

  • Bilal, M., Ren, J., Inc, M., Alhefthi, R.K.: Performance analysis of underwater vertical wireless optical communication system in the presence of weak turbulence, pointing errors and attenuation losses. Opt. Quantum Electron. 55, 1–20 (2023)

    Article  Google Scholar 

  • Bilal, M., Ren, J., Alsubaie, A.S.A., Mahmoud, K.H., Inc, M.: Optical quantum electromagnetic binormal Heisenberg landau lifshitz electromotive microscale. Opt. Quantum Electron. 56, 1–23 (2024)

    Article  Google Scholar 

  • Buckwar, E., Luchko, Y.: Invariance of a partial differential equation of fractional order under the lie group of scaling transformations. J. Math. Anal. Appl. 227, 81–97 (1998)

    Article  MathSciNet  Google Scholar 

  • Chen, W., Wang, Y., Tian, L.: Lump solution and interaction solutions to the fourth-order extended (2+ 1)-dimensional Boiti–Leon–Manna–Pempinelli equation. Commun. Theor. Phys. 75, 105003 (2023)

    Article  ADS  MathSciNet  Google Scholar 

  • Chowdhury, M.A., Miah, M.M., Iqbal, M.A., Alshehri, H.M., Baleanu, D., Osman, M.S.: Advanced exact solutions to the nano-ionic currents equation through MTs and the soliton equation containing the RLC transmission line. Eur. Phys. J. plus (2023). https://doi.org/10.1140/epjp/s13360-023-04105-y

    Article  Google Scholar 

  • Das, N., Ray, S.S.: Performance analysis of underwater vertical wireless optical communication system in the presence of weak turbulence, pointing errors and attenuation losses. Opt. Quantum Electron. 55, 1–18 (2023)

    Article  Google Scholar 

  • Elsayed, M.E.Z., Khaled, A.E.A.: The generalized projective Riccati equations method and its applications for solving two nonlinear PDEs describing microtubules. Int. J. Phys. Sci. 10, 391–402 (2015)

    Article  Google Scholar 

  • Fan, E.: Extended tanh-function method and its applications to nonlinear equations. Phys. Lett. A 277, 212–218 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  • Fan, E., Zhang, H.: Phys. Lett. Sect. A Gen. at. Solid State Phys. 246, 403–406 (1998)

    Google Scholar 

  • Fokas, A.S., Lenells, J.: The unified method: I. Nonlinearizable problems on the half-line. J. Phys. A Math. Theor. 45, 195201 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  • Ghazanfar, S., Ahmed, N., Iqbal, M.S., Akgül, A., Bayram, M., De la Sen, M.: Imaging ultrasound propagation using the westervelt equation by the generalized kudryashov and modified kudryashov methods. Appl. Sci. 12, 11813 (2022)

    Article  Google Scholar 

  • Habib, M.A., Ali, H.M.S., Miah, M.M., Akbar, M.A.: The generalized Kudryashov method for new closed form traveling wave solutions to some NLEEs. AIMS Math. 4, 896–909 (2019)

    Article  MathSciNet  Google Scholar 

  • Inan, I.E., Ugurlu, Y., Inc, M.: New applications of the (G’/G,1/G)-expansion method. Acta Phys. Pol., A 128, 245–252 (2015)

    Article  ADS  Google Scholar 

  • Iqbal, M.A., Miah, M.M., Rasid, M.M., Alshehri, H.M., Osman, M.S.: An investigation of two integro-differential KP hierarchy equations to find out closed form solitons in mathematical physics. Arab J. Basic Appl. Sci. 30(535), 545 (2023a)

    Google Scholar 

  • Iqbal, M.A., Baleanu, D., Miah, M.M., Ali, H.M.S., Alshehri, H.M., Osman, M.S.: New soliton solutions of the mZK equation and the Gerdjikov-Ivanov equation by employing the double G′/G, 1/G-expansion method. Results Phys. 47, 106391 (2023b)

    Article  Google Scholar 

  • Irshad, A., Mohyud-din, S.T., Ahmed, N., Khan, U.: A new modification in simple equation method and its applications on nonlinear equations of physical nature. Results Phys. 7, 4232–4240 (2017)

    Article  ADS  Google Scholar 

  • Islam, S., Khan, K., Arnous, A.H.: Generalized Kudryashov method for solving some (3+ 1)-dimensional nonlinear evolution equations. New Trends Math. Sci. 57, 46–57 (2015)

    MathSciNet  Google Scholar 

  • Jafari, H., Kadkhoda, N., Baleanu, D.: Fractional Lie group method of the time-fractional Boussinesq equation. Nonlinear Dyn. 81, 1569–1574 (2015)

    Article  MathSciNet  Google Scholar 

  • Kaur, L.: Generalized (G′/G)-expansion method for generalized fifth order KdV equation with time-dependent coefficients. Math. Sci. Lett. 3, 255–261 (2014)

    Article  Google Scholar 

  • Khater, M.M.A.: Computational traveling wave solutions of the nonlinear rangwala–rao model arising in electric field. Mathematics 10, 4658 (2022)

    Article  Google Scholar 

  • Kumar, A., Pankaj, R.D.: Tanh–coth scheme for traveling wave solutions for Nonlinear Wave Interaction model. J. Egypt. Math. Soc. 23, 282–285 (2015)

    Article  MathSciNet  Google Scholar 

  • Kumar, D., Nuruzzaman, M., Paul, G.C., Hoque, A.: Novel localized waves and interaction solutions for a dimensionally reduced (2 + 1)-dimensional Boussinesq equation from N-soliton solutions. Nonlinear Dyn. 107, 2717–2743 (2022a)

    Article  Google Scholar 

  • Kumar, D., Paul, G.C., Seadawy, A.R., Darvishi, M.T.: A variety of novel closed‐form soliton solutions to the family of Boussinesq‐like equations with different types. J. Ocean Eng. Sci. 7, 543–554 (2022b)

    Article  Google Scholar 

  • Li, L.X., Li, E.Q., Wang, M.L.: Further advanced investigation of the complex Hirota-dynamical model to extract soliton solutions. Appl. Math. 25, 454–462 (2010)

    Article  Google Scholar 

  • Mamun, A.-A., Ananna, S.N., An, T., Asaduzzaman, M., Miah, M.M.: Solitary wave structures of a family of 3D fractional WBBM equation via the tanh–coth approach Partial Differ. Equations Appl. Math. 5, 100237 (2022)

    Google Scholar 

  • Miah, M.M.: New exact traveling wave solutions to the Zakharov-Kuznetsov-Benjamin-Bona-Mahony equation. AIP Conf. Proc. 2901, 030002 (2023)

    Article  Google Scholar 

  • Miah, M.M., Ali, H.M.S., Akbar, M.A., Wazwaz, A.M.: Some applications of the (G′/G, 1/G)-expansion method to find new exact solutions of NLEEs. Eur. Phys. J. PLUS 132, 252 (2017)

    Article  Google Scholar 

  • Miah, M.M., Seadawy, A.R., Ali, H.M.S., Akbar, M.A.: Abundant closed form wave solutions to some nonlinear evolution equations in mathematical physics. J. Ocean Eng. Sci. 5, 269–278 (2020)

    Article  Google Scholar 

  • Miah, M.M., Iqbal, M.A., Osman, M.S.: A study on stochastic longitudinal wave equation in a magneto-electro-elastic annular bar to find the analytical solutions. Commun. Theor. Phys. 75, 085008 (2023)

    Article  ADS  MathSciNet  Google Scholar 

  • Mohanty, S.K., Kravchenko, O.V., Deka, M.K., Dev, A.N., Churikov, D.V.: The exact solutions of the 2+ 1–dimensional Kadomtsev–Petviashvili equation with variable coefficients by extended generalized G′ G-expansion method. J. King Saud Univ. Sci. 35, 102358 (2023)

    Article  Google Scholar 

  • Naher, H., Abdullah, F.A.: The basic (G’/G)-expansion method for the fourth order boussinesq equation. Appl. Math. 03, 1144–1152 (2012)

    Article  Google Scholar 

  • Parkes, E.J., Duffy, B.R.: An automated tanh-function method for finding solitary wave solutions to non-linear evolution equations. Comput. Phys. Commun. 98, 288–300 (1996)

    Article  ADS  Google Scholar 

  • Pei, F., Wu, G., Guo, Y.: Construction of infinite series exact solitary wave solution of the KPI equation via an auxiliary equation method. Mathematics 11(6), 1560 (2023)

    Article  Google Scholar 

  • Rasid, M.M., Miah, M.M., Ganie, A.H., Alshehri, H.M., Osman, M.S., Ma, W.X.: Further advanced investigation of the complex Hirota-dynamical model to extract soliton solutions. Mod. Phys. Lett. B 2450074, 1–18 (2023)

    Google Scholar 

  • Raza, N., Aslam, M.R., Rezazadeh, H.: Demonstration of photonic micro-ring resonator based digital bit magnitude comparator. Opt. Quantum Electron. 51, 1–12 (2019)

    Article  Google Scholar 

  • Rehman, S.U., Bilal, M., Ahmad, J.: Highly dispersive optical and other soliton solutions to fiber Bragg gratings with the application of different mechanisms. Int. J. Mod. Phys. B (2022). https://doi.org/10.1142/S0217979222501934

    Article  Google Scholar 

  • Roshid, H.O., Kabir, M.R., Bhowmik, R.C., Datta, B.K.: Investigation of Solitary wave solutions for Vakhnenko-Parkes equation via exp-function and Exp(−ϕ(ξ))-expansion method. Springerplus (2014). https://doi.org/10.1186/2193-1801-3-692

    Article  Google Scholar 

  • Sadaf, M., Arshed, S., Ghazala Akram, I.: Exact soliton and solitary wave solutions to the Fokas system using two variables G′G,1G -expansion technique and generalized projective Riccati equation method. Optik 268, 169713 (2022)

    Article  ADS  Google Scholar 

  • Seadawy, A.R., Bilal, M., Younis, M., Rizvi, S.T.R.: Resonant optical solitons with conformable time-fractional nonlinear Schrödinger equation. Int. J. Mod. Phys. B 35, 2150044 (2020)

    Article  ADS  Google Scholar 

  • Shahid, N., Baber, M.Z., Shaikh, T.S., Iqbal, G., Ahmed, N., Akgul, A., Sen, M.D.L.: Results Phys. 58, 107444 (2024)

    Article  Google Scholar 

  • Shaikh, T.S., Baber, M.Z., Ahmed, N., Iqbal, M.S., Akgül, A., El Din, S.M.: Acoustic wave structures for the confirmable time-fractional Westervelt equation in ultrasound imaging. Results Phys. 49, 106494 (2023)

    Article  Google Scholar 

  • Silambarasan, R., Nisar, K.S.: Doubly periodic solutions and non-topological solitons of 2+ 1− dimension Wazwaz Kaur Boussinesq equation employing Jacobi elliptic function method. Chaos Solitons Fractals 175, 113997 (2023)

    Article  MathSciNet  Google Scholar 

  • Sirisubtawee, S., Koonprasert, S., Sungnul, S.: Symmetry (basel). 11, 1–29 (2019)

    Google Scholar 

  • Taghizadeh, N., Mirzazadeh, M.: The first integral method to some complex nonlinear partial differential equations. J. Comput. Appl. Math. 235, 4871–4877 (2011)

    Article  MathSciNet  Google Scholar 

  • Tandel, P., Patel, H., Patel, T.: Tsunami wave propagation model: a fractional approach. J. Ocean Eng. Sci. 7, 509–520 (2022)

    Article  Google Scholar 

  • Vivas-Cortez, M., Akram, G., Sadaf, M., Arshed, S., Rehan, K., Farooq, K.: Traveling wave behavior of new (2+ 1)-dimensional combined KdV–mKdV equation. Results Phys. 45, 106244 (2023)

    Article  Google Scholar 

  • Wang, M., Zhou, Y., Li, Z.: Phys. Lett. Sect. A Gen. at. Solid State Phys. 216, 67–75 (1996)

    Google Scholar 

  • Wazwaz, A.-M., Kaur, L.: New integrable Boussinesq equations of distinct dimensions with diverse variety of soliton solutions. Nonlinear Dyn. 97, 83–94 (2019)

    Article  Google Scholar 

  • Wen, X., Lü, D.: Extended Jacobi elliptic function expansion method and its application to nonlinear evolution equation. Chaos Solitons Fractals 41, 1454–1458 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  • Yomba, E.: Chin. J. Phys. 43, 991–1003 (2005)

    Google Scholar 

  • Younas, U., Younis, M., Seadawy, A.R., Rizvi, S.T.R., Althobaiti, S., Sayed, S.: Diverse exact solutions for modified nonlinear Schrödinger equation with conformable fractional derivative. Results Phys. 20, 103766 (2021)

    Article  Google Scholar 

  • Zafar, A., Raheel, M., Ali, K.K., Razzaq, W.: Kinematic reconstructions of extended theories of gravity at small and intermediate redshifts. Eur. Phys. J. plus 135, 1–17 (2020)

    Article  Google Scholar 

  • Zayed, E.M.E., Alurrfi, K.A.E.: The-expansion method and its applications for solving two higher order nonlinear evolution equations. Math. Probl. Eng. 2014, 1–20 (2014)

    MathSciNet  Google Scholar 

  • Zhang, Z.Y.: Exact traveling wave solutions of the perturbed Klein--Gordon equation with quadratic nonlinearity in (1+ 1)-dimension, Part I: Without local inductance and dissipation effect. Turkish J. Phys. 37, 259–267 (2013)

    Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to researchers supporting project number (RSPD2024R535), King Saud University, Riyadh, Saudi Arabia.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

M.N.H., F.Z.D. and S.R. wrote the main manuscript text and M.M.M. prepared all figures and supervised. All authors reviewed the manuscript.

Corresponding author

Correspondence to M. Mamun Miah.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of interest

The authors have not disclosed any competing interests.

Ethical approval

I hereby declare that this manuscript is the result of my independent creation under the reviewers’ comments. Except for the quoted contents, this manuscript does not contain any research achievements that have been published or written by other individuals or groups.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hossain, M.N., Miah, M.M., Duraihem, F.Z. et al. Stability, modulation instability, and analytical study of the confirmable time fractional Westervelt equation and the Wazwaz Kaur Boussinesq equation. Opt Quant Electron 56, 948 (2024). https://doi.org/10.1007/s11082-024-06776-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-024-06776-y

Keywords

Navigation