Skip to main content
Log in

Novel localized waves and interaction solutions for a dimensionally reduced (2 + 1)-dimensional Boussinesq equation from N-soliton solutions

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The Boussinesq equation has been of considerable interest in coastal and ocean engineering models for simulating surface water waves in shallow seas and harbors, tsunami wave propagation, wave overtopping, inundation, and near-shore wave process. Consequently, the study deals with the dynamics of localized waves and interaction solutions to a dimensionally reduced (2 + 1)-dimensional Boussinesq equation from N-soliton solutions by Hirota’s bilinear method. The integrability of the equation of interest was confirmed via the Painlevé test. Taking the long-wave limit approach in coordination with some constraint parameters available in the N-soliton solutions, the localized waves and interaction solutions are constructed. The interaction solutions can be obtained among the localized waves, such as (1) one breather or one lump from the two solitons, (2) one stripe and one breather, and one stripe and one lump from the three solitons, and (3) two stripes and one breather, one lump and one periodic breather, two stripes and one lump, two breathers, and two lumps from the four solitons. The interactions among the solitons are found to be elastic. The energy, phase shift, shape, period, amplitude, and propagation direction of each of the localized waves and interaction solutions are found to be influenced and controlled by the parameters involved. The dynamical characteristics of these localized waves and interaction solutions are demonstrated through some 3D and density graphs. The outcomes achieved in this study can be used to illustrate the wave interaction phenomena in shallow water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability statement

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Huang, L., Yue, Y., Chen, Y.: Localized waves and interaction solutions to a (3+1)-dimensional generalized KP equation. Comput. Math. Appl. 76(4), 831–844 (2018)

    MathSciNet  MATH  Google Scholar 

  2. Li, B.X., Borshch, V., Xiao, R.L., Paladugu, S., Turiv, T., Shiyanovskii, S.V., Lavrentovich, O.D.: Electrically driven three-dimensional solitary waves as director bullets in nematic liquid crystals. Nat. Commun. 9, 2912 (2018)

    Google Scholar 

  3. Hirota, R.: The Direct Method in Soliton Theory. Cambridge University Press, Cambridge (2004). https://doi.org/10.1017/CBO9780511543043

    Book  MATH  Google Scholar 

  4. Orapine, H.O., Ayankop-Andi, E., Ibeh, G.J.: Analytical and numerical computations of multi-solitons in the Korteweg-de Vries (KdV) equation. Appl. Math. 11(07), 511 (2020)

    Google Scholar 

  5. Zabusky, N.J., Kruskal, M.D.: Interaction of solitons in a collisionless plasma and recurrence of initial states. Phys. Rev. Lett. 15, 240–243 (1965)

    MATH  Google Scholar 

  6. Aya, S., Araoka, F.: Kinetics of motile solitons in nematic liquid crystals. Nat. Commun. 11, 3248 (2020). https://doi.org/10.1038/s41467-020-16864-8

    Article  Google Scholar 

  7. Liu, W., Liu, Y., Zhang, Y., Shi, D.: Riemann–Hilbert approach for multi-soliton solutions of a fourth-order nonlinear Schrödinger equation. Mod. Phys. Letts. B. 33(33), 1950416 (2019)

    Google Scholar 

  8. Chabchoub, A., Hoffmann, N.P., Akhmediev, N.: Rogue wave observation in a water wave tank. Phys. Rev. Lett. 106(20), 204502 (2011)

    Google Scholar 

  9. Paul, G.C., Eti, F.Z., Kumar, D.: Dynamical analysis of lump, lump-triangular periodic, predictable rogue and breather wave solutions to the (3+1)-dimensional gKP–Boussinesq equation. Results Phys. 19, 103525 (2020)

    Google Scholar 

  10. Wu, J., Liu, Y., Piao, L., Zhuang, J., Wang, D.S.: Nonlinear localized waves resonance and interaction solutions of the (3+1)-dimensional Boiti–Leon–Manna–Pempinelli equation. Nonlinear Dyn. 100, 1527–1541 (2020)

    MATH  Google Scholar 

  11. Dudley, J.M., Genty, G., Mussot, A., Chabchoub, A., Dias, F.: Rogue waves and analogies in optics and oceanography. Nat. Rev. Phys. 1(11), 675–689 (2019)

    Google Scholar 

  12. Yu, W., Zhang, H., Zhou, Q., Biswas, A., Alzahrani, A.K., Liu, W.: The mixed interaction of localized, breather, exploding and solitary wave for the (3+1)-dimensional Kadomtsev–Petviashvili equation in fluid dynamics. Nonlinear Dyn. 100(2), 1611–1619 (2020)

    Google Scholar 

  13. Nestor, S., Abbagari, S., Houwe, A., Betchewe, G., Doka, S.Y.: Diverse chirped optical solitons and new complex traveling waves in nonlinear optical fibers. Commun. Theor. Phys. 72(6), 065501 (2020)

    MathSciNet  MATH  Google Scholar 

  14. Xu, T., Chen, Y., Lin, J.: Localized waves of the coupled cubic–quintic nonlinear Schrödinger equations in nonlinear optics. Chin. Phys. B. 26(12), 120201 (2017)

    Google Scholar 

  15. Liu, Y., Wen, X.Y., Wang, D.S.: Novel interaction phenomena of localized waves in the generalized (3+1)-dimensional KP equation. Comput. Math. Appl. 78(1), 1–9 (2019)

    MathSciNet  MATH  Google Scholar 

  16. Li, Z.Q., Tian, S.F., Peng, W.Q., Yang, J.J.: Inverse scattering transform and soliton classification of higher-order nonlinear Schrödinger–Maxwell-Bloch equations. Theor. Math. Phys. 203(3), 709–725 (2020)

    MATH  Google Scholar 

  17. Lü, X., Hua, Y.F., Chen, S.J., Tang, X.F.: Integrability characteristics of a novel (2+1)-dimensional nonlinear model: Painlevé analysis, soliton solutions, Bäcklund transformation, Lax pair and infinitely many conservation laws. Commun. Nonlinear Sci. Numer. Simul. 95, 105612 (2021)

    MATH  Google Scholar 

  18. Yang, Y., Suzuki, T., Cheng, X.: Darboux transformations and exact solutions for the integrable nonlocal Lakshmanan−Porsezian−Daniel equation. Appl. Math. Letts. 99, 105998 (2020)

    MathSciNet  MATH  Google Scholar 

  19. Ryabov, P.N., Sinelshchikov, D.I., Kochanov, M.B.: Application of the Kudryashov method for finding exact solutions of the high order nonlinear evolution equations. Appl. Math. Comput. 218(7), 39653972 (2011)

    MathSciNet  MATH  Google Scholar 

  20. Kumar, D., Seadawy, A.R., Joardar, A.K.: Modified Kudryashov method via new exact solutions for some conformable fractional differential equations arising in mathematical biology. Chin. J. Phys. 56(1), 75–85 (2018)

    Google Scholar 

  21. Kumar, D., Kaplan, M.: Application of the modified Kudryashov method to the generalized Schrödinger–Boussinesq equations. Opt. Quant. Electron. 50(9), 1–14 (2018)

    Google Scholar 

  22. Kumar, D., Paul, G.C., Biswas, T., Seadawy, A.R., Baowali, R., Kamal, M., Rezazadeh, H.: Optical solutions to the Kundu–Mukherjee–Naskar equation: mathematical and graphical analysis with oblique wave propagation. Phys. Scr. 96(2), 025218 (2020)

    Google Scholar 

  23. Ahmed, H.M., Rabie, W.B., Ragusa, M.A.: Optical solitons and other solutions to Kaup–Newell equation with Jacobi elliptic function expansion method. Anal. Math. Phys. 11(1), 1–6 (2021)

    MathSciNet  MATH  Google Scholar 

  24. Kumar, D., Hosseini, K., Samadani, F.: The sine-Gordon expansion method to look for the traveling wave solutions of the Tzitzéica type equations in nonlinear optics. Optik 149, 439–446 (2017)

    Google Scholar 

  25. Kumar, D., Manafian, J., Hawlader, F., Ranjbaran, A.: New closed form soliton and other solutions of the Kundu–Eckhaus equation via the extended sinh-Gordon equation expansion method. Optik 160, 159–167 (2018)

    Google Scholar 

  26. Seadawy, A.R., Kumar, D., Chakrabarty, A.K.: Dispersive optical soliton solutions for the hyperbolic and cubic-quintic nonlinear Schrödinger equations via the extended sinh-Gordon equation expansion method. Eur. Phys. J. Plus. 133(5), 182 (2018)

    Google Scholar 

  27. Kumar, D., Joardar, A.K., Hoque, A., Paul, G.C.: Investigation of dynamics of nematicons in liquid crystals by extended sinh-Gordon equation expansion method. Opt. Quant. Electron. 51(7), 1–36 (2019)

    Google Scholar 

  28. Kumar, D., Paul, G.C.: Solitary and periodic wave solutions to the family of nonlinear conformable fractional Boussinesq-like equations. Math. Methods Appl. Sci. 44(4), 3138–3158 (2021)

    MathSciNet  MATH  Google Scholar 

  29. Kumar, D., Paul, G.C., Mondal, J., Islam, A.S.: On the propagation of alphabetic-shaped solitons to the (2+1)-dimensional fractional electrical transmission line model with wave obliqueness. Res. Phys. 19, 103641 (2020)

    Google Scholar 

  30. Kumar, D., Park, C., Tamanna, N., Paul, G.C., Osman, M.S.: Dynamics of two-mode Sawada–Kotera equation: mathematical and graphical analysis of its dual-wave solutions. Res. Phys. 19, 103581 (2020)

    Google Scholar 

  31. Cui, C.J., Tang, X.Y., Cui, Y.J.: New variable separation solutions and wave interactions for the (3+1)-dimensional Boiti–Leon–Manna–Pempinelli equation. Appl. Math. Letts. 102, 106109 (2020)

    MathSciNet  MATH  Google Scholar 

  32. Wang, D.S., Guo, B., Wang, X.: Long-time asymptotics of the focusing Kundu–Eckhaus equation with nonzero boundary conditions. J. Differ. Equ. 266(9), 5209–5253 (2019)

    MathSciNet  MATH  Google Scholar 

  33. Kaur, L., Wazwaz, A.M.: Painlevé analysis and invariant solutions of generalized fifth-order nonlinear integrable equation. Nonlinear Dyn. 94(4), 2469–2477 (2018)

    MATH  Google Scholar 

  34. Ren, B., Lin, J., Lou, Z.M.: Consistent Riccati expansion and rational solutions of the Drinfel’d–Sokolov–Wilson equation. Appl. Math. Letts. 105, 106326 (2020)

    MathSciNet  MATH  Google Scholar 

  35. Dong, M.J., Tian, S.F., Yan, X.W., Zou, L.: Solitary waves, homoclinic breather waves and rogue waves of the (3+1)-dimensional Hirota bilinear equation. Comput. Math. Appl. 75(3), 957–964 (2018)

    MathSciNet  MATH  Google Scholar 

  36. Hua, Y.F., Guo, B.L., Ma, W.X., Lü, X.: Interaction behavior associated with a generalized (2+1)-dimensional Hirota bilinear equation for nonlinear waves. Appl. Math. Modell. 74, 184–198 (2019)

    MathSciNet  MATH  Google Scholar 

  37. He, B., Meng, Q.: Lump and interaction solutions for a generalized (3+1)-dimensional propagation model of nonlinear waves in fluid dynamics. Int. J. Comput. Math. 98(3), 592–607 (2021)

    MathSciNet  Google Scholar 

  38. Kumar, D., Kuo, C.K., Paul, G.C., Saha, J., Jahan, I.: Wave propagation of resonance multi-stripes, complexitons, and lump and its variety interaction solutions to the (2+1)-dimensional pKP equation. Commun. Nonlinear Sci. Numer. Simul. 100, 105853 (2021)

    MathSciNet  MATH  Google Scholar 

  39. Yue, Y., Huang, L., Chen, Y.: Localized waves and interaction solutions to an extended (3+1)-dimensional Jimbo–Miwa equation. Appl. Math. Letts. 89, 70–77 (2019)

    MathSciNet  MATH  Google Scholar 

  40. Rao, J., He, J., Mihalache, D., Cheng, Y.: Dynamics and interaction scenarios of localized wave structures in the Kadomtsev–Petviashvili-based system. Appl. Math. Letts. 94, 166–173 (2019)

    MathSciNet  MATH  Google Scholar 

  41. Liu, Y., Wen, X.Y., Wang, D.S.: The N-soliton solution and localized wave interaction solutions of the (2+1)-dimensional generalized Hirota-Satsuma-Ito equation. Comput. Math. Appl. 77(4), 947–966 (2019)

    MathSciNet  MATH  Google Scholar 

  42. Zhang, W.J., Xia, T.C.: Solitary wave, M-lump and localized interaction solutions to the (4+1)-dimensional Fokas equation. Phys. Scr. 95(4), 045217 (2020)

    Google Scholar 

  43. Sun, L., Qi, J., An, H.: Novel localized wave solutions of the (2+1)-dimensional Boiti–Leon–Manna–Pempinelli equation. Commun. Theor. Phys. 72(12), 125009 (2020)

    MathSciNet  Google Scholar 

  44. Song, N., Xue, H., Xue, Y.K.: Dynamics of higher-order localized waves for a coupled nonlinear Schrödinger equation. Commun. Nonlinear Sci. Numer. Simul. 82, 105046 (2020)

    MathSciNet  MATH  Google Scholar 

  45. Ma, Y.L.: N-solitons, breathers and rogue waves for a generalized Boussinesq equation. Int. J. Comput. Math. 97(8), 1648–1661 (2020)

    MathSciNet  Google Scholar 

  46. Vinodh, D., Asokan, R.: Multi-soliton, rogue wave and periodic wave solutions of generalized (2+1)-dimensional Boussinesq equation. Int. J. Appl. Comput. Math. 6(1), 1–6 (2020)

    MathSciNet  MATH  Google Scholar 

  47. Liu, W., Zhang, Y.: Dynamics of localized waves and interaction solutions for the (3+1)-dimensional B-type Kadomtsev–Petviashvili–Boussinesq equation. Adv. Differ. Equ. 2020(1), 1–12 (2020)

    MathSciNet  MATH  Google Scholar 

  48. Yue, Y., Chen, Y.: Dynamics of localized waves in a (3+1)-dimensional nonlinear evolution equation. Mod. Phys. Letts. B. 33(09), 1950101 (2019)

    MathSciNet  Google Scholar 

  49. Wazwaz, A.M.: New travelling wave solutions to the Boussinesq and the Klein–Gordon equations. Commun. Nonlinear Sci. Numer. Simul. 13(5), 889–901 (2008)

    MathSciNet  MATH  Google Scholar 

  50. Jawad, A.M., Petković, M.D., Laketa, P., Biswas, A.: Dynamics of shallow water waves with Boussinesq equation. Sci. Iran. 20(1), 179–184 (2013)

    Google Scholar 

  51. Lin, Q., Wu, Y.H., Loxton, R., Lai, S.: Linear B-spline finite element method for the improved Boussinesq equation. J. Comput. Appl. Math. 224(2), 658–667 (2019)

    MathSciNet  MATH  Google Scholar 

  52. Wazwaz, A.M., Kaur, L.: New integrable Boussinesq equations of distinct dimensions with diverse variety of soliton solutions. Nonlinear Dyn. 97(1), 83–94 (2019)

    MATH  Google Scholar 

  53. Zou, H., Li, H., Liu, X., Liu, A.: The application of a numerical model to coastal surface water waves. J Ocean Univ. China. 4(2), 177–184 (2005)

    MATH  Google Scholar 

  54. Droenen, N., Deigaard, R.: Adaptation of a Boussinesq wave model for dune erosion modeling. Coastal Eng. Proc. 33, 31–31 (2012)

    Google Scholar 

  55. Kirby, J.T.: Boussinesq models and their application to coastal processes across a wide range of scales. J. Waterw. Port Coast. Ocean Eng. 142(6), 03116005 (2016)

    Google Scholar 

  56. Lynett, P.J., Melby, J.A., Kim, D.H.: An application of Boussinesq modeling to hurricane wave overtopping and inundation. Ocean Eng. 37(1), 135–153 (2010)

    Google Scholar 

  57. Roeber, V., Cheung, K.F., Kobayashi, M.H.: Shock-capturing Boussinesq-type model for nearshore wave processes. Coastal Eng. 57(4), 407–423 (2010)

    Google Scholar 

  58. Weiss, J., Tabor, M., Carnevale, G.: The Painlevé property for partial differential equations. J. Math Phys. 24(3), 522–526 (1983)

    MathSciNet  MATH  Google Scholar 

  59. Weiss, J.: The Painlevé property for partial differential equations. II. Bäcklund transformation, Lax pairs, and the Schwarzian derivative. J. Math. Phys. 24(6), 1405–1413 (1983)

    MathSciNet  MATH  Google Scholar 

  60. Jimbo, M., Kruskal, M.D., Miwa, T.: The Painlevé Test for the self-dual Yang-Mills equations. Phys. Lett. A 92(2), 59–60 (1982)

    MathSciNet  Google Scholar 

  61. Xu, G.Q., Li, Z.B.: A maple package for the Painlevé test of nonlinear partial differential equations. Chin. Phys. Lett. 20(7), 975 (2003)

    Google Scholar 

  62. Xu, G.Q., Li, Z.B.: PDEPtest: a package for the Painlevé test of nonlinear partial differential equations. Appl. Math. Comput. 169(2), 1364–1379 (2005)

    MathSciNet  MATH  Google Scholar 

  63. Ablowitz, M.J., Satsuma, J.: Solitons and rational solutions of nonlinear evolution equations. J. Math. Phys. 19(10), 2180–2186 (1978)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to three anonymous referees for a number of helpful and perceptive comments for improving the manuscript. This work was partially supported by a grant from the University Grants Commission, Bangladesh, through the Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj (3632104), and the National Science and Technology (NST), Government of Bangladesh, by providing NST fellowship (39.00.0000.012.002.04.19-06). The first and second authors acknowledge this support, respectively.

Author information

Authors and Affiliations

Authors

Contributions

Dipankar Kumar (conceptualization: lead; data curation: equal; formal analysis: lead; investigation: lead; methodology: equal; resources: equal; software: equal; supervision: equal; validation: equal; writing—review and editing: equal). Md. Nuruzzaman (formal analysis: equal; funding acquisition: equal; methodology: equal; software: equal; writing—original draft: lead). Gour Chandra Paul (data curation: equal; formal analysis: equal; methodology: equal; resources: equal; software: equal; supervision: equal; validation: equal; writing—review and editing: equal). Ashabul Hoque (formal analysis: equal; supervision: equal; validation: equal; writing—review and editing: equal). Finally, all authors have approved this manuscript and take responsibility for the accuracy of its contents.

Corresponding authors

Correspondence to Dipankar Kumar or Gour Chandra Paul.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human or animal statement

This article does not contain any studies with human or animal subjects.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, D., Nuruzzaman, M., Paul, G.C. et al. Novel localized waves and interaction solutions for a dimensionally reduced (2 + 1)-dimensional Boussinesq equation from N-soliton solutions. Nonlinear Dyn 107, 2717–2743 (2022). https://doi.org/10.1007/s11071-021-07077-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-07077-9

Keywords

Navigation