Skip to main content
Log in

Trust evaluation model immune to decoherent noise in quantum communication network

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Trust evaluation between communicating nodes is a critical requirement for establishing secure and reliable communication links in quantum communication networks. However, existing research on quantum trust evaluation has not considered the impact of noise in the communication environment. In particular, decoherence causes noise that can disrupt the transmission process of trust factors. To address this issue, this paper proposes a quantum trust evaluation model that is immune to decoherent noise by using particles in a decoherence free state. Only a six-particle decoherence free state needs to be prepared, while the remaining particles can be obtained by quantum bit-swapping operations. The security analysis shows that this model exhibits resistance to both internal and external attacks, in addition to better privacy performance and higher particle utilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

All the data’s available in the manuscript.

References

  • Basak, J.: Multi-user semi-device independent quantum private query. Quantum Inf. Process. 22(7), 276 (2023)

    Article  ADS  MathSciNet  Google Scholar 

  • Bourennane, M., Eibl, M., Gaertner, S., et al.: Decoherence-free quantum information processing with four-photon entangled states. Phys. Rev. Lett. 92(10), 107901 (2004)

    Article  ADS  Google Scholar 

  • Brassard, G., Bussieres, F., Godbout, N., et al.: Multi-user quantum key distribution using wave-length division multiplexing. Proc. of SPIE 2003 5260(6), 149–153 (2003)

    ADS  Google Scholar 

  • Chen, Y.A., Zhang, Q., Chen, T.Y., et al.: An integrated space-to-ground quantum communication network over 4600 kilometres. Nature 589(7841), 214–219 (2021)

    Article  ADS  Google Scholar 

  • Cabello, A.: Six-qubit permutation-based decoherence-free orthogonal basis. Phys. Rev. A 75(2), 020301 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  • Chang, Y., Zhang, S.B., Wan, G., et al.: Practical two-way QKD-based quantum private query with better performance in user privacy. Int. J. Theor. Phys. 58(7), 2069–2080 (2019)

    Article  Google Scholar 

  • Chehimi, M., Saad, W.: Physics-informed quantum communication networks: a vision toward the quantum internet. IEEE Network 36(5), 32–38 (2022)

    Article  Google Scholar 

  • Chen, T.Y., Zhang, J., Boileau, J.C., et al.: Experimental quantum communication without a shared reference frame. Phys. Rev. Lett. 96(15), 150504 (2006)

    Article  ADS  Google Scholar 

  • Chen, T.Y., Wang, J., Liang, H., et al.: Metropolitan all-pass and inter-city quantum communication network[J]. Opt. Express 18(26), 27217–27225 (2010)

    Article  ADS  Google Scholar 

  • Fan-Yuan, G.J., Lu, F.Y., Wang, S., et al.: Robust and adaptable quantum key distribution network without trusted nodes. Optica 9(7), 812–823 (2022)

    Article  ADS  Google Scholar 

  • Fiaschi, N., Hensen, B., Wallucks, A., et al.: Optomechanical quantum teleportation. Nat. Photonics 15(11), 817–821 (2021)

    Article  ADS  Google Scholar 

  • Gu, J., Cao, X.Y., Fu, Y., et al.: Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Sci. Bull. 67(21), 2167–2175 (2022)

    Article  Google Scholar 

  • Gyongyosi, L., Imre, S.: Advances in the quantum internet. Commun. ACM 65(8), 52–63 (2022)

    Article  Google Scholar 

  • Gyongyosi, L., Imre, S., Nguyen, H.V.: A survey on quantum channel capacities. IEEE Communications Surveys & Tutorials 20(2), 1149–1205 (2018)

    Article  Google Scholar 

  • Hu, X. M., Guo, Y., Liu, B. H., et al. Progress in quantum teleportation. Nat. Rev. Phys. 1–15 (2023)

  • Huang, H., Zhao, W., Zhang, X., et al.: Quantum semi-trust evaluation model with graph-based quantum walk teleportation. Int. J. Theor. Phys. 61(6), 1–11 (2022)

    Article  MathSciNet  Google Scholar 

  • Joshi, S.K., Aktas, D., Wengerowsky, S., et al.: A trusted node–free eight-user metropolitan quantum communication network. Sci. Adv. 6(36), eaba0959 (2020)

    Article  ADS  Google Scholar 

  • Langenfeld, S., Welte, S., Hartung, L., et al.: Quantum teleportation between remote qubit memories with only a single photon as a resource. Phys. Rev. Lett. 126(13), 130502 (2021)

    Article  ADS  Google Scholar 

  • Li, Y.B., Qin, S.J., Yuan, Z., et al.: Quantum private comparison against decoherence noise. Quantum Inf. Process. 12, 2191–2205 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  • Li, T., Yang, G.J., Deng, F.G.: Heralded quantum repeater for a quantum communication network based on quantum dots embedded in optical microcavities. Phys. Rev. A 93(1), 012302 (2016)

    Article  ADS  Google Scholar 

  • Liu, B., Xia, S., Xiao, D., et al.: Decoy-state method for quantum-key-distribution-based quantum private query. Sci. Chin. Phys. Mech. Astron. 65(4), 240312 (2022)

    Article  ADS  Google Scholar 

  • Luo, Y.H., Zhong, H.S., Erhard, M., et al.: Quantum teleportation in high dimensions. Phys. Rev. Lett. 123(7), 070505 (2019)

    Article  ADS  Google Scholar 

  • Pirandola, S.: End-to-end capacities of a quantum communication network. Commun. Phys. 2(1), 51 (2019)

    Article  Google Scholar 

  • Qi, Z., Li, Y., Huang, Y., et al.: A 15-user quantum secure direct communication network. Light: Sci. Appl. 10(1), 1–8 (2021)

    Article  Google Scholar 

  • Sheng, Y.B., Zhou, L., Long, G.L.: One-step quantum secure direct communication. Science Bulletin 67(4), 367–374 (2022)

    Article  ADS  Google Scholar 

  • Sun, Y., Wen, Q.Y., Gao, F., et al.: Robust variations of the Bennett–Brassard 1984 protocol against collective noise. Phys. Rev. A 80(3), 032321 (2009)

    Article  ADS  Google Scholar 

  • Sun, Z., Song, L., Huang, Q., et al.: Toward practical quantum secure direct communication: a quantum-memory-free protocol and code design. IEEE Trans. Commun. 68(9), 5778–5792 (2020)

    Article  Google Scholar 

  • Sun, J., Zhu, D., Guan, Y., et al.: Mutual trust evaluation model in quantum distributed communication network. Int. J. Theor. Phys. 62(4), 89 (2023)

    Article  MathSciNet  Google Scholar 

  • Tang, Y.H., Jia, H.Y., Wu, X., et al.: Robust semi-quantum private comparison protocols against collective noises with decoherence-free states. Quantum Inf. Process. 21(3), 97 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  • Townsend, P.: Quantum cryptography on multiuser optical fiber network. Nature 385(6611), 47–49 (1997)

    Article  ADS  Google Scholar 

  • Tsai, C.L., Hwang, T.: Secure quantum communication scheme for six-qubit decoherence-free states. Int. J. Theor. Phys. 57, 3808–3818 (2018)

    Article  MathSciNet  Google Scholar 

  • Wang, H.P., Zhou, R.G.: Multi-user quantum private query using symmetric multi-particle w state. Int. J. Theor. Phys. 61(3), 71 (2022)

    Article  MathSciNet  Google Scholar 

  • Wei, C.Y., Cai, X.Q., Wang, T.Y., et al.: Error tolerance bound in QKD-based quantum private query. IEEE J. Sel. Areas Commun. 38(3), 517–527 (2020)

    Article  Google Scholar 

  • Xu, F., Ma, X., Zhang, Q., et al.: Secure quantum key distribution with realistic devices. Rev. Mod. Phys. 92(2), 025002 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  • Yang, C.W., Lin, J., Wang, K.L., et al.: Cryptanalysis and improvement of a controlled quantum secure direct communication with authentication protocol based on five-particle cluster state. Quantum Inf. Process. 22(5), 196 (2023)

    Article  ADS  MathSciNet  Google Scholar 

  • Zhang, J., Jiang, M.: Butterfly network coding based on bidirectional hybrid controlled quantum communication. Quantum Inf. Process. 21(3), 1–15 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  • Zhang, S.B., Xie, Z.H., Yin, et al.: Study on quantum trust model based on node trust evaluation. Chin. J. Electron. 26(3), 608–613 (2017)

    Article  Google Scholar 

  • Zheng, T., Chang, Y., Zhang, S.: Quantum risk assessment model based on two three-qubit GHZ states. Comput. Model. Eng. Sci. 124(2), 573–584 (2020)

    Google Scholar 

  • Zhou, L., Xu, B.W., Zhong, W., et al.: Device-independent quantum secure direct communication with single-photon sources. Phys. Rev. Appl. 19(1), 014036 (2023)

    Article  ADS  Google Scholar 

Download references

Funding

Authors want to thanks anonymous reviewers who help to improve this paper. This work is supported by the Industrial technology foundation public service platform project (grants number TC210H024), and the Industrial Internet Innovation Development Project (grants number TC200H01N).

Author information

Authors and Affiliations

Authors

Contributions

JS wrote the main manuscript text, and others reviewed paper. All authors reviewed the manuscript.

Corresponding author

Correspondence to Yi Jiang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

This article does not contain any studies with animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, J., Qian, J., Shi, C. et al. Trust evaluation model immune to decoherent noise in quantum communication network. Opt Quant Electron 56, 761 (2024). https://doi.org/10.1007/s11082-024-06563-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-024-06563-9

Keywords

Navigation