Skip to main content
Log in

The singlet–triplet transition of two interacting electrons in a Frost–Musulin quantum dot

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In the paper, the electronic properties of a quantum dot (QD) using the Frost–Musulin potential model are investigated taking into account both an external magnetic field and electron–electron interaction. For this purpose, the Schrödinger equation (SE) is analytically solved without considering electron–electron interaction by employing the Nikiforov–Uvarov (NU) procedure, and the energy levels and wave functions are determined. Then, the singlet–triplet (ST) transition is studied for different values of magnetic fields. According to our results, Both the dot size and magnetic field have key roles in the ground state transition. The ST transition of the ground state moves to lower magnetic fields as the QD size is increased. However the transition occurs at higher magnetic fields when the potential depth is increased. The transition for small QD size occurs only from 1S to 3P. But by increasing the QD size, another transition is also observed from 1D to 3F. These transitions occur at smaller magnetic fields when the QD size is increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and materials

The data that supports the findings of this study are available from the corresponding author upon reasonable request.

References

  • Adepoju, A.G., Eweh, E.J.: Approximate and analytical bound state solutions of the Frost–Musulin potential. Can. J. Phys. 92, 18–23 (2014a)

    CAS  ADS  Google Scholar 

  • Adepoju, A.G., Eweh, E.J.: Approximate and analytical bound state solutions of the Frost–Musulin potential. Can. J. Phys. 92, 21–26 (2014b)

    ADS  Google Scholar 

  • Arif, M.S., Bera, A., Ghosh, M.: Tuning diamagnetic susceptibility of impurity doped quantum dots by noise-binding energy interplay. Heliyon 5, e01147–e01152 (2019)

    PubMed  PubMed Central  Google Scholar 

  • Ashoori, R.C., Stormer, H.L., Weiner, J.S., Pfeiffer, L.N., Baldwin, K.W., West, K.W.: N-electron ground state energies of a quantum dot in magnetic field. Phys. Rev. Lett. 71, 613–618 (1993)

    CAS  PubMed  ADS  Google Scholar 

  • Bao, C.G.: Large regions of stability in the phase diagrams of quantum dots and the associated filling factors. Phys. Rev. Lett. 79, 3475–3479 (1997)

    CAS  ADS  Google Scholar 

  • Bimberg, D., Grundman, M., Ledentsov, N.: Quantum Dot Heterostructures. Wiley, New York (1999)

    Google Scholar 

  • Datta, S., Ghosh, M.: Influence of impurity binding energy on the excitation dynamics of doped GaAs quantum dot: role of noise. J. Chem. Sci. 135, 15–22 (2023)

    CAS  Google Scholar 

  • Donald, N.A.: Semiconductor Physics and Devices (Neamen), 3rd edn. McGraw-Hill, New York (2003)

    Google Scholar 

  • Farout, M., Sever, R., Ikhdair, S.: Approximate solution to the time-dependent Kratzer plus screened Coulomb potential in the Feinberg–Horodecki equation. Chin. Phys. B 29, 060303–060309 (2020)

    CAS  ADS  Google Scholar 

  • Frost, A.A., Musulin, B.: Semiempirical potential energy functions. I. The H2 and H2+ diatomic molecules. J. Chem. Phys. 22, 1017–1020 (1954a)

    CAS  ADS  Google Scholar 

  • Frost, A.A., Musulin, B.: The possible existence of a reduced potential energy function for diatomic molecules. J. Am. Chem. Soc. 76, 2045–2048 (1954b)

    CAS  Google Scholar 

  • Greene, R.L., Aldrich, C.: Variational wave functions for a screened Coulomb potential. Phys. Rev. A 14, 236–240 (1976)

    ADS  Google Scholar 

  • Guo, K.X., Chen, C.Y.: Polaron effects on the optical second-harmonic generation in a quantum well within an electric field. Turk. J. Phys. 21, 1261–1272 (1997)

    CAS  Google Scholar 

  • Heiss, W.D.: Quantum Dots (A Doorway to Nanoscale Physics). Springer, Berlin (2005)

    Google Scholar 

  • Idiodi, J.O.A., Onate, C.A.: Entropy, fisher information and variance with Frost–Musulin potenial. Commun. Theor. Phys. 66, 26–275 (2016)

    MathSciNet  Google Scholar 

  • Inyang, E.P., Inyang, E.P., William, E.S., Ntibi, J.E., Ibanga, E.A.: Bound state solutions of the Schrödinger equation with Frost–Musulin potential using the Nikiforov–Uvarov-functional analysis (NUFA) MethodBulg. J. Phys. 49, 329–339 (2022)

    Google Scholar 

  • Inyang, E.P., William, E.S., Obu, J.A., Ita, B.I., Inyang, E.P., Akpan, I.O.: Energy spectra and expectation values of selected diatomic molecules through the solutions of Klein–Gordon equation with Eckart–Hellmann potential model. Mol. Phys. 119, e1956615–e1956619 (2021)

    ADS  Google Scholar 

  • Khordad, R.: Use of modified Gaussian potential to study an exciton in a spherical quantum dot. Superlatt. Microstruc. 54, 7–15 (2013b)

    MathSciNet  CAS  ADS  Google Scholar 

  • Khordad, R.: Optical properties of quantum wires: Rashba effect and external magnetic field. J. Lumin. 134, 201–207 (2013a)

    CAS  Google Scholar 

  • Khordad, R.: Simultaneous effects of electron-electron interactions, Rashba spin-orbit interaction and magnetic field on susceptibility of quantum dots. J. Magn. Magn. Mater. 449, 510–514 (2018)

    CAS  ADS  Google Scholar 

  • Khordad, R., Bahramiyan, H.: Electronic properties of a hydrogenic impurity in a quantum wire with V-shaped cross-section: spin-orbit coupling, relativistic correction and conductance. Int. J. Mod. Phys. C 24, 1350041–1350049 (2013)

    ADS  Google Scholar 

  • Khordad, R., Mirhosseini, B.: Internal energy and entropy of a quantum pseudodot. Physica B 420, 10–14 (2013)

    CAS  ADS  Google Scholar 

  • Khordad, R., Mirhosseini, B.: Application of Tietz potential to study singlet–triplet transition of a two-electron quantum dot. Commun. Theor. Phys. 62, 77–80 (2014)

    CAS  ADS  Google Scholar 

  • Lennard-Jones, J.E.: Cohesion. Proc. Phys. Soc. 43, 461–482 (1931)

    CAS  ADS  Google Scholar 

  • Maksym, P.A., Chakraborty, T.: Quantum dots in a magnetic field: role of electron-electron interactions. Phys. Rev. Lett. 65, 108–111 (1990)

    CAS  PubMed  ADS  Google Scholar 

  • Maksym, P.A., Imamura, H., Mallon, G.P., Aoki, H.: Molecular aspects of electron correlation in quantum dots. J. Phys. Condens. Matter 12, R299–R305 (2000)

    CAS  ADS  Google Scholar 

  • Manning, M.F., Rosen, N.: A potential function for the vibrations of diatomic molecules. Phys. Rev. 44, 951–954 (1933)

    Google Scholar 

  • Miura, N.: Physics of Semiconductors in High Magnetic Fields. Oxford University, New York (2008)

    Google Scholar 

  • Mohamed, W.A.A., Abd El-Gawad, H., Mekkey, S., Galal, H., Handal, H., Mousa, H., Labib, A.: Quantum dots synthetization and future prospect applications. Nanothech. Rev. 10, 1926–1940 (2021)

    CAS  Google Scholar 

  • Nazmitdinov, R.G., Simonović, N.S., Rost, J.M.: Semiclassical analysis of a two-electron quantum dot in a magnetic field: dimensional phenomena. Phys. Rev. B 65, 155307–155310 (2002)

    ADS  Google Scholar 

  • Nikiforov, A.F., Uvarov, V.B.: Special Functiond of Mathematical Physics. Birkhauser, Basel (1988)

    Google Scholar 

  • Okon, I.B., Popoola, O., Isonguyo, C.N.: Approximate solutions of Schrodinger equation with some diatomic molecular interactions using Nikiforov–Uvarov method. Adv. High Energy Phys. 2017, 9671816–961821 (2017)

    Google Scholar 

  • Omugbe, E., Osafile, O.E., Okon, I.B., Inyang, E.P., William, E.S., Jahanshir, A.: Approximate solutions of the Schrödinger equation with Hulthén plus screened Kratzer potential using the Nikiforov–Uvarov-functional analysis (NUFA) method: an application to diatomic molecules. Few-Body Syst. 63, 6–9 (2022)

    ADS  Google Scholar 

  • Onate, C.A., Onyeaju, M.C.: Dirac particles in the field of Frost–Musulin diatomic potential and the thermodynamic properties via parametric Nikiforov–Uvarov method, Sri Lankan. J. Phys. 17, 1–17 (2016)

    Google Scholar 

  • Onyenegecha, C.P., Opara, A.I., Njoku, I.J., Udensi, S.C., Ukewuihe, U.M., Okereke, C.J., Omame, A.: Analytical solutions of D-dimensional Klein–Gordon equation with modified Mobius squared potential. Results Phys. 25, 104144–104149 (2021)

    Google Scholar 

  • Pal, S., Ghosh, M.: Tailoring nonlinear optical rectification coefficient of impurity doped quantum dots by invoking Gaussian white noise. Opt. Quant. Electron. 48, 372–379 (2016)

    Google Scholar 

  • Prada, M., Blick, R.H., Joynt, R.: Singlet–triplet relaxation in two-electron silicon quantum dots. Phys. Rev. B 77, 115438–115442 (2008)

    ADS  Google Scholar 

  • Rosen, N., Morse, P.M.: On the vibrations of polyatomic molecules. Phys. Rev. 42, 210–215 (1932)

    CAS  ADS  Google Scholar 

  • Ruan, W.Y.: Transformation bracket for 2D harmonic oscillator functions and its application to few-electron quantum dots. J. Math. Phys. 37, 3760–3768 (1996)

    MathSciNet  ADS  Google Scholar 

  • Tas, A., Aydogdu, O., Salti, M.: Dirac particles interacting with the improved Frost–Musulin potential within the effective mass formalism. Ann. Phys. 379, 67–82 (2017)

    MathSciNet  CAS  ADS  Google Scholar 

  • Varshni, Y.P., Shukla, R.C.: On the Frost–Musulin reduced potential energy function. J. Phys. Chem. 65, 2224–2226 (1961)

    CAS  Google Scholar 

  • Wagner, M., Merkt, U., Chaplik, A.V.: Spin-singlet-spin-triplet oscillations in quantum dots. Phys. Rev. B 45, 1951–1954 (1992)

    CAS  ADS  Google Scholar 

  • Wei, H.: Four-parameter exactly solvable potential for diatomic molecules. Phys. Rev. A 42, 2524–2530 (1990)

    CAS  PubMed  ADS  Google Scholar 

  • William, E.S., Onye, S.C., Ikot, A.N., Nwachukwu, A.N., Inyang, E.P., Okon, I.B., Akpan, I.O., Ita, B.I.: Magnetic susceptibility and magnetocaloric effect of Frost–Musulin potential subjected to magnetic and Aharonov–Bohm (Flux) fields for CO and NO diatomic molecules. J. Theor. Appl. Phys. 17, 172318–172329 (2023)

    Google Scholar 

  • Woods, R.D., Saxon, D.S.: Diffuse surface optical model for nucleon-nuclei scattering. Phys. Rev. 95, 577–581 (1954)

    CAS  ADS  Google Scholar 

  • Xie, W.F.: Four-electron quantum dots in magnetic fields. Solid State Electron. 43, 2115–2122 (1999)

    CAS  ADS  Google Scholar 

  • Xie, W.F.: Ground state of a two-electron quantum dot with a Gaussian confining potential. Chin. Phys. Lett. 23, 193–195 (2006a)

    ADS  Google Scholar 

  • Xie, W.F.: Singlet–triplet transitions of a Pöschl–Teller quantum dot. Commun. Theor. Phys. 46, 1101–1105 (2006b)

    CAS  ADS  Google Scholar 

  • Xie, W.F.: Four-electron systems confined in multilayer quantum dots. Mod. Phys. Lett. B 21, 1399–1413 (2007)

    CAS  ADS  Google Scholar 

  • Xie, W.F.: A study of ground state behavior of a two-electron quantum ring. Mod. Phys. Lett. B 23, 2361–2367 (2009a)

    CAS  ADS  Google Scholar 

  • Xie, W.F.: A study of two confined electrons using the Woods–Saxon potential. J. Phys. Condens. Matter 21, 115802–115808 (2009b)

    PubMed  ADS  Google Scholar 

  • Xie, R.H., Gong, J.: Simple three-parameter model potential for diatomic systems: from weakly and strongly bound molecules to metastable molecular ions. Phys. Rev. Lett. 95, 263202–263208 (2005)

    PubMed  ADS  Google Scholar 

  • Xie, W.F., Wang, A.: Ground state transitions in vertically coupled N-layer single electron quantum dots. Solid State Commun. 128, 369–373 (2003)

    CAS  ADS  Google Scholar 

  • Yin, Y.: Singlet–triplet relaxation induced by confined phonons in nanowire-based quantum dots. Semicond. Sci. Technol. 25, 125004–125009 (2010)

    ADS  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

RK wrote the manuscript. He prepared all the figures. He discussed the results and contributed to the final manuscript.

Corresponding author

Correspondence to R. Khordad.

Ethics declarations

Conflict interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1

Appendix 1

In this part, we present a detail of the solution of the Schrödinger equation (SE) for one particle with FM potential exposed to magnetic field. In 2D, the SE can be written as

$$\left\{\frac{1}{2{m}_{e}}{\left({\varvec{P}}-e{\varvec{A}}\right)}^{2}+\left[{D}_{0}-{D}_{0}\left(1+\alpha {r}_{0}\right){e}^{-\alpha x}+{D}_{0}\frac{\alpha {r}_{0}^{2}}{r}{e}^{-\alpha x}\right]\right\}{\varphi }_{nl}\left(r,\theta \right)={E}_{nl}{\varphi }_{nl}\left(r,\theta \right)$$
(8)

where \({E}_{nl}\), and \({m}_{e}\) are the system’s energy and the effective mass. The vector potential in the cylindrical coordinates is chosen as

$${\varvec{A}}=\left(0,\frac{B{e}^{-\alpha r}}{1-{e}^{-\alpha r}},0\right)$$
(9)

The wave function in the cylindrical coordinates is written as

$${\varphi }_{nl}\left(r,\theta \right)=\frac{1}{2\pi r}{e}^{il\theta }{f}_{nl}\left(r\right)$$
(10)

Inserting Eqs. (8) and (10) in Eq. (8), we obtain

$$\frac{{d}^{2}{f}_{nl}(r)}{d{r}^{2}}+\left\{{E}_{nl}+{D}_{0}\alpha {r}_{0}{e}^{-\alpha x}+\frac{{D}_{0}{\alpha }^{2}{r}_{0}^{2}{e}^{-\alpha x}}{1-{e}^{-\alpha x}}-\frac{\hslash {\omega }_{c}l\alpha {e}^{-\alpha x}}{{\left(1-{e}^{-\alpha x}\right)}^{2}}-\frac{{m}_{e}{\omega }_{c}^{2}{e}^{-2\alpha x}}{2{\left(1-{e}^{-\alpha x}\right)}^{2}}-\frac{{\hslash }^{2}}{2{m}_{e}}\left(\frac{{l}^{2}-\frac{1}{4}}{{r}^{2}}\right)\right\}{f}_{nl}\left(r\right)=0$$
(11)

where \({\omega }_{c}=eB/{m}_{e}\). To solve Eq. (11), we use the Greene-Aldrich approximation (Greene and Aldrich 1976). The approximation is written as

$$\frac{1}{{r}^{2}}\approx \frac{{\alpha }^{2}}{{\left(1-{e}^{-\alpha x}\right)}^{2}}$$
(12)

Now, we introduce a new parameter as \(t={e}^{-\alpha x}\). Then, Eq. (11) can be written as

$$\frac{{d}^{2}{f}_{nl}}{d{t}^{2}}+\frac{(1-t)}{t(1-t)}\frac{d{f}_{nl}}{dt}+\frac{1}{{t}^{2}{\left(1-t\right)}^{2}}\left[{-A}_{1}{t}^{2}+{A}_{2}t-{A}_{3}\right]{f}_{nl}=0$$
(13)

where

$${A}_{1}=-{\epsilon }_{nl}+2{c}_{0}-{c}_{1}+{c}_{3}, {A}_{2}=2{\epsilon }_{nl}+{c}_{0}-{c}_{1}-{c}_{2},$$
$${A}_{3}={\epsilon }_{nl}+{\rho }_{nl}$$
(14)

In Eq. (14), the used parameters are as

$${\epsilon }_{nl}=-\frac{2{m}_{e}{E}_{nl}}{{\hslash }^{2}{\alpha }^{2}}, {c}_{0}=\frac{2{m}_{e}{D}_{0}{r}_{0}}{{\hslash }^{2}\alpha }, {c}_{1}=\frac{2{m}_{e}{r}_{0}^{2}}{{\hslash }^{2}},$$
$${c}_{2}=\frac{2{m}_{e}{\omega }_{c}}{\hslash \alpha }, {c}_{3}=\frac{{m}_{e}^{2}{\omega }_{c}^{2}}{{\hslash }^{2}{\alpha }^{2}}, {\rho }_{nl}={l}^{2}-\frac{1}{4}$$
(15)

Now, we use the Nikiforov–Uvarov (NU) procedure to obtain the energy levels and wave functions. A brief illustration of the NU method is explained here that has been proposed by Nikiforov and Uvarov (Nikiforov and Uvarov 1988). Using the following coordinate transformation, \(t=t(x)\), this equation is given by

$$\frac{{d}^{2}\psi (t)}{d{t}^{2}}+\frac{\overline{\omega }(t)}{\vartheta (t)}\frac{d\psi (t)}{dt}+\frac{\widetilde{\vartheta }\left(t\right)}{{\vartheta }^{2}\left(t\right)}\psi \left(t\right)=0$$
(16)

Here \(\overline{\omega }(t)\), \(\vartheta (t)\), and \(\widetilde{\vartheta }\left(t\right)\) are polynomials. Then, the parametric NU equation is written as (Okon et al. 2017)

$$\frac{{d}^{2}\psi (t)}{d{t}^{2}}+\frac{{(a}_{1}-{a}_{2}t}{t(1-{a}_{3}t)}\frac{)d\psi (t)}{dt}+\frac{1}{{t}^{2}{(1-{a}_{3}t)}^{2}}\left[-{\xi }_{1}{t}^{2}+{\xi }_{2}t-{\xi }_{3}\right]\psi \left(t\right)=0$$
(17)

The used constants in Eq. (17) are as below

$${a}_{1}={a}_{2}={a}_{3}=1, {a}_{4}=\frac{1}{2}\left(1-{a}_{1}\right), {a}_{5}=\frac{1}{2}\left({a}_{2}-2{a}_{3}\right), {a}_{6}={a}_{5}^{2}+{\xi }_{1}$$
(18)
$${a}_{7}=2{a}_{4}{a}_{5}-{\xi }_{2}, {a}_{8}={a}_{4}^{2}+{\xi }_{3}, {a}_{9}={a}_{3}{a}_{7}+{a}_{3}^{2}{a}_{8}+{a}_{6}$$
(19)

The energy equation is given by

$${a}_{2}n-\left(2n+1\right){a}_{5}+\left(2n+1\right)\left(\sqrt{{a}_{9}}+{a}_{3}\sqrt{{a}_{8}}\right)+n\left(n-1\right){a}_{3}+$$
$${a}_{7}+2{a}_{3}{a}_{8}+2\sqrt{{a}_{8}{a}_{9}}=0$$
(20)

Applying the NU method, we can obtain the energy levels as

$${E}_{nl}=\frac{{\alpha }^{2}{\hslash }^{2}{\rho }_{nl}}{2{m}_{e}}-\frac{{\alpha }^{2}{\hslash }^{2}}{8{m}_{e}}{\left[\frac{{\Lambda }_{1}+{\Lambda }_{2}}{\sqrt{{\Lambda }_{1}}}\right]}^{2}$$
(21)

where

$${\Lambda }_{1}={\left[n+\frac{1}{2}+{\left(\frac{{m}_{e}^{2}{\omega }_{c}^{2}}{{\alpha }^{2}{\hslash }^{2}}+\frac{2{m}_{e}{\omega }_{c}}{\alpha \hslash }+\frac{2{m}_{e}{D}_{0}{r}_{0}}{\alpha {\hslash }^{2}}+{l}^{2}\right)}^{1/2}\right]}^{2}$$
(22)
$${\Lambda }_{2}=-\frac{{m}_{e}^{2}{\omega }_{c}^{2}}{{\alpha }^{2}{\hslash }^{2}}-\frac{4{m}_{e}{D}_{0}{r}_{0}}{\alpha {\hslash }^{2}}+\frac{2{m}_{e}{r}_{0}^{2}}{{\hslash }^{2}}+{\rho }_{nl}$$
(23)

The wave functions can be written as

$${f}_{nl}\left(t\right)={N}_{nl}{t}^{\sqrt{{\epsilon }_{nl}+{c}_{2}}}{\left(1-t\right)}^{\frac{1}{2}+\sqrt{\frac{1}{4}+{c}_{2}}}{P}_{n}^{\left(\delta ,\kappa \right)}\left(1-2t\right)$$
(24)

where \({P}_{n}^{(\alpha ,\beta )}\left(x\right)\) are the Jacobi polynomials and

$$\delta =2\sqrt{{\epsilon }_{nl}+{c}_{2}}, \kappa =\sqrt{\frac{1}{4}+{c}_{2}}$$
(25)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khordad, R. The singlet–triplet transition of two interacting electrons in a Frost–Musulin quantum dot. Opt Quant Electron 56, 596 (2024). https://doi.org/10.1007/s11082-023-06199-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-06199-1

Keywords

Navigation