Skip to main content
Log in

New design of high transmission efficiency all-optical triplexer based on MIM plasmonic double-triangle-teeth-shaped nano-resonator waveguide structures

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this paper, a new design of high transmission efficiency all-optical triplexer based on metal–insulator–metal (MIM) plasmonic double-triangle-teeth-shaped nano-resonator waveguide structures was proposed. By properly adjusting the height of the triangle-teeth-shaped nano-resonators, certain wavelengths can be filtered out and the crosstalk of each channel also can be greatly reduced. The numerical results show that the proposed MIM plasmonic waveguide structure could really function as an all-optical triplexer with respect to the three wavelengths i.e. λ = 1310 nm, 1490 nm, and 1550 nm, respectively. It can be widely used as the fiber access network element for multiplexer-demultiplexer wavelength selective in fiber-to-the-home (FTTH) communication systems with transmission efficiency higher than 90%. The crosstalks are reduced from − 8.70 to − 149.16 dB for the channel 1, from − 17 to − 83.56 dB for the channel 2, and from − 31.68 to − 99.05 dB for the channel 3, respectively. The FWHM is reduced from 65 to 20 nm for the channel 1, from 100 to 25 nm for the channel 2, and from 110 to 25 nm for the channel 3, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Anglin, K., Adams, D.C., Ribaudo, T., Wasserman, D.: Toothed mid-infrared metal–insulator–metal waveguides. In: CLEO (2011). https://doi.org/10.1364/CLEO_SI.2011.CTuS4

  • Aparna, U., Kumar, M.S.: Compact and efficient ring resonator-based plasmonic lens with multiple functionalities. Photonics 18, 349–359 (2023)

    CAS  Google Scholar 

  • Aparna, U., Mendiratta, R., Shrinidhi, L.K.: 1 × 2 plasmonic wavelength demultiplexer using rectangular MIM waveguide. J. Opt. Commun. (2020). https://doi.org/10.1515/joc-2019-0290

    Article  Google Scholar 

  • Bahri, H., Hocini, A., Bensalah, H., Mouetsi, S., Ingebrandt, S., Pachauri, V., Hamani, M.: A high-sensitivity biosensor based on a metal–insulator–metal diamond resonator and application for biochemical and environment detections. Optik Int. J. Light Electron Opt. 271, 170083 (2022)

    Article  CAS  Google Scholar 

  • Barnes, W.L., Dereux, A., Ebbesen, T.: Surface plasmon subwavelength optics. Nature 424, 824–830 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

  • Ben Salah, H., Hocini, A., Bahri, H., Melouki, N.: High sensitivity plasmonic sensor based on metal–insulator–metal waveguide coupled with a notched hexagonal ring resonator and a stub. ECS J. Solid State Sci. Technol. 10(8), 810 (2021)

    Article  Google Scholar 

  • Ben Salah, H., Bahri, H., Hocini, A., Zegaar, I., Ingebrandt, S., Pachauri, V.: Design of a plasmonic sensor based on a nanosized structure for biochemical application. J. Phys. Conf. Ser. 2240(1), 12024 (2022a)

    Article  Google Scholar 

  • Ben Salah, H., Hocini, A., Bahri, H.: Design and analysis of a mid-infrared ultra-high sensitive sensor based on metal–insulator–metal structure and its application for temperature and detection of glucose. Prog. Electromagn. Res M 112, 81–91 (2022b)

    Article  CAS  Google Scholar 

  • Bensalah, H., Hocini, A., Temmar, M.N., Khedrouche, D.: Design of mid infrared high sensitive metal–insulator–metal plasmonic sensor. Chin. J. Phys. 61, 86–97 (2019)

    Article  Google Scholar 

  • Bensalah, H., Hocini, A., Bahri, H., Khedrouche, D., Ingebrandt, S., Pachauri, V.: A plasmonic refractive index sensor with high sensitivity and its application for temperature and detection of biomolecules. J. Opt. 52, 1035–1046 (2023)

    Article  Google Scholar 

  • Butt, M.A., Kazanskiy, N.L., Khonina, S.N.: Miniaturized Design of a 1 × 2 plasmonic demultiplexer based on metal–insulator–metal waveguide for telecommunication wavelengths. Plasmonics 18(2), 635–641 (2023a)

    Article  CAS  Google Scholar 

  • Butt, M.A., Kazanskiy, N.L., Khonina, S.N.: Tapered waveguide mode converters for metal–insulator–metal waveguide plasmonic sensors. Measurement 211, 112601 (2023b)

    Article  Google Scholar 

  • Choo, H., Kim, M.K., Staffaroni, M., Seok, T.J., Bokor, J., Cabrini, S., Schuck, P.J., Wu, M.C., Yablonovitch, E.: Nanofocusing in a metal–insulator–metal gap plasmon waveguide with a three-dimensional linear taper. Nat. Photonics 6, 838–844 (2012)

    Article  ADS  CAS  Google Scholar 

  • Chou Chao, C.-T., Chou Chau, Y.-F., Chen, S.-H., Huang, H.J.: Ultrahigh sensitivity of a plasmonic pressure sensor with a compact size. Nanomaterials 11, 3147 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ebadi, S.M., Örtegren, J., Bayati, M.S., Ram, S.B.: A multipurpose and highly-compact plasmonic filter based on metal–insulator–metal waveguides. IEEE Photonics J. 12(3), 1–9 (2020)

    Article  Google Scholar 

  • Fakhruldeen, H.F., Fakhruldeen, H.F.: Design and simulation of plasmonic NOT gate based on insulator–metal–insulator (IMI) waveguides. Adv. Electromagn. 9, 91 (2020)

    Article  ADS  Google Scholar 

  • Han, Z., Forsberg, E., He, S.: Surface plasmon Bragg gratings formed in metal–insulator–metal waveguides. IEEE Photonics Technol. 19, 91–93 (2007a)

    Article  ADS  Google Scholar 

  • Han, Z., Forsberg, E., He, S.: Surface plasmon Bragg gratings formed in metal-insulatormetal waveguides. IEEE Photon. Technol. 19, 91–93 (2007b)

    Article  ADS  Google Scholar 

  • Hosseini, A., Massoud, Y.: A low-loss metal–insulator–metal plasmonic Bragg reflector. Opt. Express 14, 11318–11323 (2006)

    Article  ADS  Google Scholar 

  • Hosseini, A., Nejati, H., Massoud, Y.: Modeling and design methodology for metal–insulator–metal plasmonic Bragg reflectors. Opt. Express 16, 1475–1480 (2008)

    Article  ADS  PubMed  Google Scholar 

  • Hosseini, A., Massoud, Y.: A rectangular metal–insulator–metal based nanoscale plasmonic resonator. In: IEEE-NANO, pp. 81–84 (2007)

  • Lai, W., Wen, K., Lin, J., Guo, Z., Hu, Q., Fang, Y.: Plasmonic filter and sensor based on a subwavelength end-coupled hexagonal resonator. Appl. Opt. 57(22), 6369–6374 (2018)

    Article  ADS  CAS  PubMed  Google Scholar 

  • Li, Q., Wang, T., Su, Y.K., Yan, M., Qiu, M.: Coupled mode theory analysis of mode-splitting in coupled cavity system. Opt. Express 18, 8367–8382 (2010)

    Article  ADS  CAS  PubMed  Google Scholar 

  • Lin, X., Huang, X.: Tooth-shaped plasmonic waveguide filters with nanometeric sizes. Opt. Lett. 33(23), 2874–2876 (2008a)

    Article  ADS  PubMed  Google Scholar 

  • Lin, X., Huang, X.: Tooth-shaped plasmonic waveguide filters with nanometeric sizes. Opt. Lett. 33, 2874–2876 (2008b)

    Article  ADS  PubMed  Google Scholar 

  • Lin, X., Huang, X.: Numerical modeling of a teeth-shaped nanoplasmonic waveguide filter. J. Opt. Soc. Am. B 26(7), 1263–1268 (2009)

    Article  ADS  CAS  Google Scholar 

  • Little, B.E., Chu, S.T., Haus, H.A., Foresi, J., Laine, J.P.: Microring resonator channel dropping filters. J. Lightwave Technol. 15, 998–1005 (1997)

    Article  ADS  Google Scholar 

  • Lu, H., Liu, X., Wang, L., Gong, Y., Mao, D.: Ultrafast all-optical switching in nanoplasmonic waveguide with Kerr nonlinear resonator. Opt. Express 19, 2910–2915 (2011)

    Article  ADS  CAS  PubMed  Google Scholar 

  • Manolatou, C., Khan, M.J., Fan, S., Villenueve, P.R., Haus, H.A., Joannopoulos, J.D.: Coupling of modes analysis of resonant channel add-drop filters. J. Quantum Electron. 35, 1322–1331 (1999)

    Article  ADS  CAS  Google Scholar 

  • Mao, J., Zhai, X., Wang, L., Li, H.: Numerical analysis of near-infrared plasmonic filter with high figure of merit based on Fano resonance. Appl. Phys. Express 10(8), 82201 (2017)

    Article  Google Scholar 

  • Noor, S.L., Dens, K., Reynaert, P., Catthoor, F., Lin, D., Dorpe, P.V., Naeemi, A.: Modeling and optimization of plasmonic detectors for beyond-CMOS plasmonic majority logic gates. OSA/IEEE J. Lightwave Technol. 38, 5092 (2020)

    Article  ADS  CAS  Google Scholar 

  • Nozhat, N., Granpayeh, N.: Ultra-compact metal–insulator–metal plasmonic power splitter at 1550 nm wavelength. In: Photonics Global Conference, pp. 1–4

  • Park, J., Kim, H., Lee, B.: High order plasmonic Bragg reflection in the metal–insulator–metal waveguide Bragg grating. Opt. Express 16, 413–425 (2008)

    Article  ADS  PubMed  Google Scholar 

  • Pu, M., Yao, N., Hu, C., Xin, X., Zhao, Z., Wang, C., Luo, X.: Directional coupler and nonlinear Mach-Zehnder interferometer based on metal insulator–metal plasmonic waveguide. Opt. Express 18, 21030–21037 (2010)

    Article  ADS  CAS  PubMed  Google Scholar 

  • Raether, H.: Surface Plasmons on Smooth and Rough Surfaces and on Gratings. Springer, Berlin (1988)

    Book  Google Scholar 

  • Shiyang, Z., Lo, G.Q., Kwong, D.L.: Performance of ultracompact copper-capped silicon hybrid plasmonic waveguide-ring resonators at telecom wavelengths. Opt. Express 20, 15232–15246 (2012)

    Article  ADS  Google Scholar 

  • Shunk, K., Toshihiro, O., Salah, E.E., Masanobu, H.: Design optimization and fabrication of Mach-Zehnder interferometer based on MIM plasmonic waveguides. Opt. Express 62, 16224–16231 (2016)

    Google Scholar 

  • Takahara, J., Suguru, Y., Hiroaki, T., Morimoto, A., Kobayashi, T.: Guiding of a one-dimensional optical beam with nanometer diameter. Opt. Lett. 22, 475–477 (1997)

    Article  ADS  CAS  PubMed  Google Scholar 

  • Tao, J., Huang, X., Lin, X., Chen, J., Zhang, Q., Jin, X.: Systematical research on characteristics of double-side teeth-shaped nano-plasmonic waveguide filters. J. Opt. Soc. Am. B 27(2), 323–327 (2010)

    Article  ADS  CAS  Google Scholar 

  • Tao, J., Wang, Q.J., Huang, X.G.: All-optical plasmonic switches based on coupled nano-disk cavity structures containing nonlinear material. Plasmonics 6, 753–759 (2011)

    Article  Google Scholar 

  • Wu, Y.D.: High transmission efficiency wavelength division multiplexer based on metal–insulator–metal plasmonic waveguides. IEEE J. Lightwave Technol. 32(24), 4242–4246 (2014a)

    ADS  Google Scholar 

  • Wu, Y.D.: New design of triplexer based on metal–insulator–metal plasmonic ring resonators. Chin. Opt. Lett. 12(11), 1106071-1–1110607 (2014b)

    Google Scholar 

  • Wu, Y.D.: High efficiency multi-functional all-optical logic gates based on MIM plasmonic waveguide structure with the Kerr-type nonlinear nano-ring resonators. Prog. Electromagn. Res. 170, 79–95 (2021)

    Article  ADS  CAS  Google Scholar 

  • Xiao, S.S., Liu, L., Qiu, M.: Resonator channel drop filters in a plasmon–polaritons metal. Opt. Express 14, 2932–2937 (2006)

    Article  ADS  PubMed  Google Scholar 

  • Ye, Y., Song, T., Xie, Y., Li, C.: Design of all-optical subtractors utilized with plasmonic ring resonators for optical computing. Photonics 10, 724 (2023). https://doi.org/10.3390/photonics10070724

    Article  CAS  Google Scholar 

  • Zhao, H., Xu, G.G., Huang, J.: Novel optical directional coupler based on surface plasmon polaritons. Physica E 40, 3025–3029 (2008)

    Article  ADS  Google Scholar 

  • Zhu, J., Huang, X., Mei, X.: Improved models for plasmonic waveguide splitters and demultiplexers at the telecommunication wavelengths. IEEE Trans. Nanotechnol. 10, 1166–1171 (2011)

    Article  ADS  Google Scholar 

  • Zhu, Y., Hu, X., Yang, H., Gong, Q.: On-chip plasmon-induced transparency based on plasmonic coupled nanocavities. Sci. Rep. 4(3752), 1–7 (2014)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Guan Yu Jhan for his constructive discussion and help.

Author information

Authors and Affiliations

Authors

Contributions

Formal analysis, writing—review and editing Y.-D.W.; software, Y.-J.X. All authors reviewed the manuscript.

Corresponding author

Correspondence to Yaw-Dong Wu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, YD., Xu, YJ. New design of high transmission efficiency all-optical triplexer based on MIM plasmonic double-triangle-teeth-shaped nano-resonator waveguide structures. Opt Quant Electron 56, 490 (2024). https://doi.org/10.1007/s11082-023-06131-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-06131-7

Keywords

Navigation