Skip to main content
Log in

New bright and dark stochastic optical solitons related to an eighth-order NLSE in the presence of higher order polynomial nonlinearity

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

The main objective of this research is to investigates the intricate realm of high stochastic solitons. The underlying model is an eighth-order nonlinear Schrödinger equation, considering the effects of spatio-temporal dispersion with elevated polynomial nonlinearity and multiplicative white noise. The influence of these factors on soliton’s behavior is investigated using Itô calculus. To explore the impact of multiplicative white noise on the governing model more clearly, both bright and dark soliton profiles are generated that are associated with the given equation. Two valid techniques, the Sine-Gordon expansion method and modified sub-equation method that are widely employed in nonlinear dynamics and soliton theory, are utilized to create these solitonic shapes in the presence of white noise. It has been noted that the phase component of the solitons contains the white noise, examining the full spectrum of soliton solutions. These techniques offer a versatile approach to collecting various soliton solutions in this field. Using both 3D and 2D visualization tools, solutions in clear graphical representations are provided. This one-of-a-kind combination of problem and methodology has led to the discovery of a plethora of novel soliton solutions and their accompanying behaviors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Akinyemi, L., Senol, M., Akpan, U., Oluwasegun, K.: The optical soliton solutions of generalized coupled nonlinear Schrödinger-Korteweg-de Vries equations. Opt. Quan. Electron. 53, 394 (2021). https://doi.org/10.1007/s11082-021-03030-7

    Article  Google Scholar 

  • Ali Akbar, M., Aini Abdullah, F., Tarikul Islam, M., Al Sharif, M.A., Osman, M.S.: New solutions of the soliton type of shallow water waves and superconductivity models. Res. Phys. 44, 106180 (2023)

    Google Scholar 

  • Baojian, H.: Assorted exact explicit solutions for the generalized Atangana’s fractional BBM-Burgers equation with the dissipative term, Front. Phys. 10, 1071200 (2022)

  • Bekir, A., Cevikel, A.C.: New solitons and periodic solutions for nonlinear physical models in mathematical physics. Nonlinear Anal. Real World Appl. 11(4), 3275–3285 (2010)

    Article  MathSciNet  Google Scholar 

  • Bullough, R.K., Caudrey, P.J. (eds.): Solitons, vol. 17. Springer, Berlin (2013)

    Google Scholar 

  • Buryak, A.V., Di Trapani, P., Skryabin, D.V., Trillo, S.: Optical solitons due to quadratic nonlinearities: from basic physics to futuristic applications. Phys. Rep. 370(2), 63–235 (2002)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  • Chirikutsi, J.: Mitigating borehole drill string torsional vibration and shock, J. Mech. Engi., 13(2) (2023)

  • Costa, A., Fabian, J., Kochan, D.: Microscopic study of the Josephson supercurrent diode effect in Josephson junctions based on two-dimensional electron gas. Phys. Rev. B 108(5), 054522 (2023)

    Article  ADS  CAS  Google Scholar 

  • Das, P.K., Mirhosseini-Alizamini, S.M., Gholami, D., Rezazadeh, H.: A comparative study between obtained solutions of the coupled Fokas Lenells equations by Sine-Gordon expansion method and rapidly convergent approximation method. Optik 283, 170888 (2023)

    Article  ADS  Google Scholar 

  • Drazin, P.G., Johnson, R.S.: Solitons: an introduction, vol. 2. Cambridge University Press, Cambridge (1989)

    Book  Google Scholar 

  • Dupire, B.: Functional calculus. Quant. Finance 19(5), 721–729 (2019)

    Article  MathSciNet  Google Scholar 

  • Goicoechea, H.E., Lima, R., Buezas, F.S., Sampaio, R.: Drill-string with cutting dynamics: a mathematical assessment of two models. J. Sound Vib. 544, 117364 (2023)

    Article  Google Scholar 

  • Gómez, S.C.A., Salas, A.H., Frias, B.A.: New periodic and soliton solutions for the Generalized BBM and Burgers-BBM equations. Appl. Math. Comput. 217, 1430–4 (2010). https://doi.org/10.1016/j.amc.2009.05.068

    Article  MathSciNet  Google Scholar 

  • Hosseini, K., Hinçal, E., Ilie, M.: Bifurcation analysis, chaotic behaviors, sensitivity analysis, and soliton solutions of a generalized Schrödinger equation. Nonlinear Dyn. 111, 17455–17462 (2023)

    Article  Google Scholar 

  • Hosseini, K., Hinçal, E., Obi, O.A., Mirzazadeh, M.: Solitary waves of coupled nonlinear Schrödinger equations: a generalized method. Opt. Quantum Electron. 55, 599 (2023)

    Article  Google Scholar 

  • Hosseini, K., Sadri, K., Hincal, E., Abbasi, A., Baleanu, D., Salahshour, S.: Periodic and solitary waves of the nonlinear Konno-Oono model: generalized methods. Opt. Quantum Electron. 55, 564 (2023)

    Article  Google Scholar 

  • Hosseini, K., Sadri, K., Hinçal, E., Sirisubtawee, S., Mirzazadeh, M.: A generalized nonlinear Schrödinger involving the weak nonlocality: Its Jacobi elliptic function solutions and modulational instability. Optik 288, 171176 (2023)

    Article  ADS  Google Scholar 

  • Iqbal, I., Rehman, H.U., Mirzazadeh, M., Hashemi, M.S.: Retrieval of optical solitons for nonlinear models with Kudryashov’s quintuple power law and dual-form nonlocal nonlinearity. Opt. Quantum Electron. 55, 588 (2023)

    Article  Google Scholar 

  • Islam, M.T., Akter Armina, M., Gómez-Aguilar, J.F., Ali Akbar, M., Perez-Careta, E.: Novel optical solitons and other wave structures of solutions to the fractional order nonlinear Schrödinger equations. Opt. Quantum Electron. 54, 520 (2022)

    Article  Google Scholar 

  • Islam, Md.T., Ryehan, S., Abdullah, F.A., Gómez-Aguilar, J.F.: The effect of Brownian motion and noise strength on solutions of stochastic Bogoyavlenskii model alongside conformable fractional derivative. Optik 287, 171140 (2023)

    Article  ADS  Google Scholar 

  • Islam, Md.T., Sarkar, T.R., Abdullah, F.A., Gómez-Aguilar, J.F.: Characteristics of dynamic waves in incompressible fluid regarding nonlinear Boiti-Leon-Manna-Pempinelli model. Phys. Scr. 98, 085230 (2023)

    Article  ADS  Google Scholar 

  • Kadkhoda, N., Jafari, H.: An analytical approach to obtain exact solutions of some space-time conformable fractional differential equations. Adv. Differ. Equ. 2019, 428 (2019)

    Article  MathSciNet  Google Scholar 

  • Kemaloglu, B., Yel, G., Bulut, H.: An application of the rational sine Gordon method to the Hirota equation. Opt. Quantum Electron. 55(7), 658 (2023)

    Article  Google Scholar 

  • Klapper, H.: Generation and propagation of dislocations during crystal growth. Mater. Chem. Phys. 66(2–3), 101–109 (2000)

    Article  CAS  Google Scholar 

  • Korkmaz, A., Hepson, O.E., Hosseini, K., Rezazadeh, H., Eslami, M.: Sine-Gordon expansion method for exact solutions to conformable time fractional equations in RLW-class. J. King Saud Univ. Sci. 32(1), 567–574 (2020)

    Article  Google Scholar 

  • Kurt, A., Rezazadeh, H., Senol, M., Neirameh, A., Tasbozan, O., Eslami, M., et al.: Two effective approaches for solving fractional generalized Hirota-Satsuma coupled KdV system arising in interaction of long waves. J. Ocean Eng. Sci. 4, 24–32 (2019). https://doi.org/10.1016/j.joes.2018.12.004

    Article  Google Scholar 

  • Li, C., Guo, Q.L.: On the solutions of the space-time fractional coupled Jaulent-Miodek equation associated with energy-dependent Schrödinger potential. Appl. Math. Lett. 121, 107517 (2021). https://doi.org/10.1016/j.aml.2021.107517

    Article  Google Scholar 

  • Murad, M.A.S., Ismael, H.F., Hamasalh, F.K., Shah, N.A., Eldin, S.M.: Optical soliton solutions for time-fractional Ginzburg Landau equation by a modified sub-equation method. Results Phys. 53, 106950 (2023)

    Article  Google Scholar 

  • Nebioglu, B., Iliev, A.I.: Higher order orthogonal polynomials as activation functions in artificial neural networks. Serdica J. Comput. 17(1), 1–16 (2023)

    Article  MathSciNet  Google Scholar 

  • Noguchi, H.: Disappearance, division, and route change of excitable reaction-diffusion waves in deformable membranes. Sci. Rep. 13(1), 6207 (2023)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Ozdemir, N., Secer, A., Ozisik, M., Bayram, M.: Optical solitons for the dispersive Schrödinger Hirota equation in the presence of spatio-temporal dispersion with parabolic law. Eur. Phys. J. Plus 138(6), 1–10 (2023). (2023)

    Article  Google Scholar 

  • Ramzan, M., Chu, Yu-Ming., Rehman, H.. U., Saleem, M.. S., Park, C.: Soliton solutions for anti-cubic nonlinearity using three anaytical approaches. J. Appl. Anal. Comput. 11(4), 2177–2192 (2021)

    MathSciNet  Google Scholar 

  • Raza, N., Seadawy, A.R., Kaplan, M., Butt, A.R.: Symbolic computation and sensitivity analysis of nonlinear Kudryashovs dynamical equation with applications. Physica Scripta 96(10), 105216 (2021)

    Article  ADS  Google Scholar 

  • Raza, N., Salman, F., Butt, A.R., Gandarias, M.L.: Lie symmetry analysis, soliton solutions and qualitative analysis concerning to the generalized q-deformed Sinh-Gordon equation. Commun. Nonlinear Sci. Numer. Simul. 116, 106824 (2023)

    Article  MathSciNet  Google Scholar 

  • Rehman, H.U., Imran, M.A., Ullah, N., Akgül, A.: On solutions of the Newell-Whitehead-Segel equation and Zeldovich equation. Math. Methods Appl. Sci. 44(8), 87134–7149 (2021)

    Article  MathSciNet  Google Scholar 

  • Rehman, H.U., Awan, A.U., Eldin, S.M., Iqbal, I.: Study of optical stochastic solitons of Biswas-Arshed equation with multiplicative noise. AIMS Math. 8(9), 21606–21621 (2023)

    Article  MathSciNet  Google Scholar 

  • Rehman, H.U., Iqbal, I., Zulfiqar, H., Gholami, D., Rezazadeh, H.: Stochastic soliton solutions of conformable nonlinear stochastic systems processed with multiplicative noise. Phys. Lett. A 486, 129100 (2023)

    Article  MathSciNet  CAS  Google Scholar 

  • Rehman, H.U., Akber, R., Wazwaz, A.M., Alshehri, H.M., Osman, M.S.: Analysis of Brownian motion in stochastic Schrödinger wave equation using Sardar sub-equation method. Optik 289, 171305 (2023)

    Article  ADS  Google Scholar 

  • Rehman, H.U., Iqbal, I., Hashemi, M.S., Mirzazadeh, M., Eslami, M.: Analysis of cubic-quartic-nonlinear Schrödinger’s equation with cubic-quintic-septic-nonic form of self-phase modulation through different techniques. Optik Int. J. Light Electron Opt. 287, 171028 (2023)

    Article  Google Scholar 

  • Samir, I., Abd-Elmonem, A., Ahmed, H.M.: General solitons for eighth-order dispersive nonlinear Schrödinger equation with ninth-power law nonlinearity using improved modified extended tanh method. Opt. Quantum Electron. 55(5), 470 (2023)

    Article  Google Scholar 

  • Shi, P., Xia, H., Han, D., Fu, R., Yuan, D.: Stochastic resonance in a time polo-delayed asymmetry bistable system driven by multiplicative white noise and additive color noise. Chaos Solitons Fractals 108, 8–14 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  • Singla, S., Saini, N.S.: Higher-order dust kinetic Alfvon wave solitons and quasi-periodic waves in a polarized dusty plasma. Waves Random Complex Media (2023). https://doi.org/10.1080/17455030.2023.2238067

    Article  Google Scholar 

  • Tarikul Islam, M., Ali Akbar, M., Gómez-Aguilar, J.F., Bonyah, E., Fernandez-Anaya, G.: Assorted soliton structures of solutions for fractional nonlinear Schrödinger types evolution equations. J. Ocean Eng. Sci. 7, 528–535 (2022)

    Article  Google Scholar 

  • Yang, Y.G., Sun, Y.H., Xu, W.: Stochastic bifurcations of a fractional-order vibro-impact system driven by additive and multiplicative Gaussian white noises. Complexity 2019, 1–10 (2019)

    Article  CAS  Google Scholar 

  • Yokus, A., Durur, H., Duran, S., Tarikul Islam, Md.: Ample felicitous wave structures for fractional foam drainage equation modeling for fluid-flow mechanism. Comput. Appl. Math 41(4), 174 (2022)

    Article  MathSciNet  Google Scholar 

  • Zakharov, V.E., Wabnitz, S.: Optical Solitons: Theoretical Challenges and Industrial Perspectives: Les Houches Workshop, September 28 october 2, 1998 (Vol. 12), Springer (2013)

  • Zayed, E.M., Arnous, A.H., Biswas, A., Asiri, A.: Optical solitons for the concatenation model with multiplicative white noise, J. Opt., pp. 1–10 (2023)

  • Zulfiqar, H., Aashiq, A., Tariq, K.U., Ahmad, H., Almohsen, B., Aslam, M., Rehman, H.U.: On the solitonic wave structures and stability analysis of the stochastic nonlinear Schrödinger equation with the impact of multiplicative noise. Optik Int. J. Light Electron Opt. 289, 171250 (2023)

    Article  Google Scholar 

Download references

Funding

The authors did not receive any funding from any organization for this research.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed in preparation, design and study the problem. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Nauman Raza.

Ethics declarations

Competing Interests

The authors declare that they have no conflict of interest.

Data availability statement

Our manuscript has no associated data.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raza, N., Arshed, S. & Alhussain, Z.A. New bright and dark stochastic optical solitons related to an eighth-order NLSE in the presence of higher order polynomial nonlinearity. Opt Quant Electron 56, 451 (2024). https://doi.org/10.1007/s11082-023-05982-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-05982-4

Keywords

Navigation