Skip to main content
Log in

Homodyne detection based multiple-beam WDM FSO communication system under various environmental conditions

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

The utilization of Free Space Optical (FSO) systems in upcoming 5G or beyond systems is appealing due to its secure transmission, unlicensed spectrum, and higher information rate. Despite the various advantages of the FSO system, long-range communication transmission is inadequate because the effectiveness of FSO systems is significantly impaired by environmental phenomena such as scintillation, fog, haze, and rain. This research intends to improve the FSO module's effectiveness in terms of channel capacity and long-range communication. The present research has employed a hybrid technique that integrates multiple-beam, Erbium-doped fiber amplifier amplification and Homodyne detection methodologies within a wavelength division multiplexing FSO system to achieve the desired outcome. The channel model employed in this study is the Gamma–Gamma model, and the framework is evaluated using various strategies including single beam (SB1 × 1), four beams (MB4 × 4), and eight beams (MB8 × 8). The findings indicate that optimal performance has been achieved through the utilization of MB8 × 8. A channel capacity of 320 Gb/s has been observed across a range of 1.6–12 km, with variations in transmission distance attributed to external environmental factors. The link effectiveness is evaluated through the calculation of the Bit Error Rate, Q factor and Eye Height analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and materials

Not applicable.

References

  • Abtahi, M., Rusch, L.A.: Mitigating of scintillation noise in FSO communication links using saturated optical amplifiers. In: Proceedings of MILCOM 2006–2006 IEEE Military Communications conference (2006). https://doi.org/10.1109/MILCOM.2006.302382

  • Andrews, L.C., Phillips, R.L., Young, C.Y.: Laser beam scintillation with applications. SPIE (2001)

  • Badar, N., Jha, R.K., Towfeeq, I.: Performance analysis of an 80 (8 × 10) Gbps RZ-DPSK based WDM-FSO system under combined effects of various weather conditions and atmospheric turbulence induced fading employing Gamma–Gamma fading model. Opt. Quantum Electron. 50, 1–11 (2018). https://doi.org/10.1007/s11082-017-1306-y

    Article  Google Scholar 

  • Banuselvasaraswathy, B., Priya, R., Chinnadurai, T.: Analysing the effect of scintillation on MIMO FSO and NZDSF integrated WDM system for BAN applications. Opt. Quantum Electron. 54, 1–25 (2022). https://doi.org/10.1007/s11082-022-04220-7

    Article  Google Scholar 

  • Basahel, A., Rafiqul, I.M., Habaebi, M.H., Suriza, A.Z.: Visibility effect on the availability of a terrestrial free space optics link under a tropical climate. J. Atmos. Solar-Terrestrial Phys. 143–144, 47–52 (2016). https://doi.org/10.1016/j.jastp.2016.03.005

    Article  ADS  Google Scholar 

  • Basavaraju, P.H., Lokesh, G.H., Mohan, G., Jhanjhi, N.Z., Flammini, F.: Statistical channel model and systematic random linear network coding based QoS oriented and energy efficient UWSN routing protocol. Electronics 11(16), 2590–2615 (2022). https://doi.org/10.3390/electronics11162590

    Article  Google Scholar 

  • Bhatnagar, M.R., Ghassemlooy, Z.: Performance analysis of gamma–gamma fading FSO MIMO links with pointing errors. J. Light. Technol. 34, 2158–2169 (2016). https://doi.org/10.1109/JLT.2016.2526053

    Article  ADS  Google Scholar 

  • Chaudhary, S., Amphawan, A.: Solid core PCF-based mode selector for MDM-Ro-FSO transmission systems. Photonic Netw. Commun. 36, 263–271 (2018). https://doi.org/10.1007/s11107-018-0778-4

    Article  Google Scholar 

  • Chaudhary, S., Amphawan, A., Nisar, K.: Realization of free space optics with OFDM under atmospheric turbulence. Optik (stuttg). 125, 5196–5198 (2014). https://doi.org/10.1016/j.ijleo.2014.05.036

    Article  ADS  Google Scholar 

  • Chowdhury, R., Choyon, A.K.M.S.J.: Design and performance analysis of spectral-efficient hybrid CPDM-CO-OFDM FSO communication system under diverse weather conditions. J. Opt. Commun. 0, 000010151520210113-1-000010151520210113-20 (2021a). https://doi.org/10.1515/joc-2021-0113

  • Chowdhury, R., Choyon, A.K.M.S.J.: Design of 320 Gbps hybrid AMI-PDM-WDM FSO link and its performance comparison with traditional models under diverse weather conditions. J. Opt. Commun. 0, 000010151520200135-1-000010151520200135-10(2021b). https://doi.org/10.1515/joc-2020-0135

  • Choyon, A.K.M.S.J., Chowdhury, R.: Design of 16 × 40 Gbps hybrid PDM-WDM FSO communication system and its performance comparison with the traditional model under diverse weather conditions of Bangladesh. J. Opt. Commun. 0, 000010151520200247-1-000010151520200247-12(2021). https://doi.org/10.1515/joc-2020-0247

  • Choyon, A.K.M.S.J., Chowdhury, S.M.R., Majumder, S.P.: Performance of a CPDM-QPSK coherent homodyne optical transmission system due to cross polarization effects. Int. Conf. Comput. Commun. Chem. Mater. Electron. Eng. IC4ME2 2018. 1–5 (2018). https://doi.org/10.1109/IC4ME2.2018.8465664

  • El-Nayal, M.K., Aly, M.M., Fayed, H.A., AbdelRassoul, R.A.: Adaptive free space optic system based on visibility detector to overcome atmospheric attenuation. Results Phys. 14, 102392-1-102392-7 (2019). https://doi.org/10.1016/j.rinp.2019.102392

    Article  Google Scholar 

  • Fadhil, H.A., Amphawan, A., Shamsuddin, H.A.B., Hussein Abd, T., Al-Khafaji, H.M.R., Aljunid, S.A., Ahmed, N.: Optimization of free space optics parameters: an optimum solution for bad weather conditions. Optik (stuttg). 124, 3969–3973 (2013). https://doi.org/10.1016/j.ijleo.2012.11.059

    Article  ADS  Google Scholar 

  • Gebhart, M., Leitgeb, E., Sheikh Muhammad, S., Flecker, B., Chlestil, C., Al Naboulsi, M., de Fornel, F., Sizun, H.: Measurement of Light attenuation in dense fog conditions for FSO applications. Atmos. Opt. Model. Meas. Simul. 5891, 58910K-1-58910K-12 (2005). https://doi.org/10.1117/12.614830

    Article  Google Scholar 

  • Grover, M., Singh, P., Kaur, P.: Mitigation of scintillation effects in WDM FSO system using multibeam technique. J. Telecommun. Inf. Technol. 2017, 69–74 (2017a). https://doi.org/10.26636/jtit.2017.111917

  • Grover, M., Singh, P., Kaur, P., Madhu, C.: Multibeam WDM-FSO system: an optimum solution for clear and hazy weather conditions. Wirel. Pers. Commun. 97, 5783–5795 (2017b). https://doi.org/10.1007/s11277-017-4810-2

  • Gupta, Y.K., Goel, A.: Performance analysis of multiple-beam WDM free space laser-communication system using homodyne detection approach. Heliyon. 9, e13325 (2023a). https://doi.org/10.1016/J.HELIYON.2023.E13325

  • Gupta, Y.K., Goel, A.: EDFA controlled spectral efficient MIMO free space optic links for mitigation of climatic turbulence conditions. Wirel. Pers. Commun. 132, 2563–2585 (2023b). https://doi.org/10.1007/s11277-023-10732-6

  • Gupta, Y.K., Goel, A., Tiwari, A., Das, A.S.: Performance analysis of high-speed MIMO FSO system in various data formats. In: 1st IEEE International Conference on Innovations in High Speed Communication and Signal Processing, IHCSP 2023, pp. 398–401. IEEE (2023)

  • Parikh, J., Jain, V.K.: Study on statistical models of atmo- spheric channel for FSO communication link. In: Proceedings of International Conference on Engineering (NUiCONE) Nirma Univ. pp. 1–7, Ahmedabad, India (2011)

  • Khalighi, M.A., Aitamer, N., Schwartz, N., Bourennane, S.: Turbulence mitigation by aperture averaging in wireless optical systems. In: 2009 10th International Conference Telecommunication ConTEL 2009, 59–66 (2009a)

  • Khalighi, M.A., Schwartz, N., Aitamer, N., Bourennane, S.: Fading reduction by aperture averaging and spatial diversity in optical wireless systems. J. Opt. Commun. Netw. 1, 580–593 (2009b). https://doi.org/10.1364/JOCN.1.000580

  • Kim, I.I., McArthur, B., Korevaar, E.J.: Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications. Opt. Wirel. Commun. III(4214), 26–37 (2001). https://doi.org/10.1117/12.417512

    Article  ADS  Google Scholar 

  • Kiran, P., Gururaj, H.L., Flammini, F., Sunil Kumar, D.S., Veeraprathap, V.: Machine learning based 64-QAM classification techniques for enhanced optical communication. Opt. Quantum Electron. 55, 1–13 (2023). https://doi.org/10.1007/s11082-023-05472-7

    Article  Google Scholar 

  • Gururaj, H.L., Natarajan, R., Almujally, N.A., Flammini, F., Krishna, S., Gupta, S.K.: Collaborative energy-efficient routing protocol for sustainable communication in 5G/6G wireless sensor networks. IEEE Open J. Commun. Soc. 4, 2050–2061 (2023). https://doi.org/10.1109/OJCOMS.2023.3312155

  • Lema, G.G.: Free space optics communication system design using iterative optimization. J. Opt. Commun. 0, 000010151520200007-1-000010151520200007-12 (2020). https://doi.org/10.1515/joc-2020-0007

  • Majumdar, A.K.: Free-space laser communication performance in the atmospheric channel. J. Opt. Fiber Commun. Rep. 2, 345–396 (2005). https://doi.org/10.1007/s10297-005-0054-0

    Article  Google Scholar 

  • Malik, A., Singh, P.: Free space optics: current applications and future challenges. Int. J. Opt. 2015, 945483-1-945483-7 (2015). https://doi.org/10.1155/2015/945483

  • Modalavalasa, S.K., Miglani, R., Chaudhary, S., Tubbal, F.: Developing cost-effective and high-speed 40Gbps FSO systems incorporating wavelength and spatial diversity techniques. Front. Phys. 9, 1–10 (2021). https://doi.org/10.3389/fphy.2021.744160

  • Kruse, P.W., McGlauchlin, L.D., McQuistan, R.B.: Elements of Infrared Technology: Generation, Transmission and Detection. Wiley, New York, NY (1962)

  • Rani, N., Singh, P., Kaur, P.: Mitigation of scintillation effects in WDM-FSO system using homodyne detection. Optik (Stuttg). 248, 168165-1-168165-9 (2021). https://doi.org/10.1016/j.ijleo.2021.168165

  • Saleh, M.A., Abass, A.K., Ali, M.H.: Enhancing performance of WDM-RoFSO communication system utilizing dual channel technique for 5G applications. Opt. Quantum Electron. 54, 1–11 (2022). https://doi.org/10.1007/s11082-022-03857-8

    Article  Google Scholar 

  • Saw, B.K., Janyani, V., Singh, G.: Performance analysis of adaptive PPM-GMSK-SIM modulation over Ғ-turbulence channel model in FSO communication. Opt. Quantum Electron. 55, 1–14 (2023). https://doi.org/10.1007/s11082-023-04821-w

    Article  Google Scholar 

  • Sharoar Jahan Choyon, A.K.M., Chowdhury, R.: Performance comparison of free-space optical (FSO) communication link under OOK, BPSK, DPSK, QPSK and 8-PSK modulation formats in the presence of strong atmospheric turbulence. J. Opt. Commun. 0, 1–7 (2020). https://doi.org/10.1515/joc-2019-0250

  • Singh, H., Miglani, R., Mittal, N., Gupta, S., Tubbal, F., Raad, R., Amhoud, E.M.: Designing an optimized free space optical (FSO) link for terrestrial commercial applications under turbulent channel conditions. Opt. Quantum Electron. 55, 532 (2023). https://doi.org/10.1007/s11082-023-04805-w

    Article  Google Scholar 

  • Singh, H., Mittal, N., Miglani, R., Singh, H., Gaba, G.S., Hedabou, M.: Design and analysis of high-speed free space optical (FSO) communication system for supporting fifth generation (5G) data services in diverse geographical locations of India. IEEE Photonics J. 13, 1–12 (2021). https://doi.org/10.1109/JPHOT.2021.3113650

    Article  Google Scholar 

  • Singh, M., Atieh, A., Grover, A., Barukab, O.: Performance analysis of 40 Gb/s free space optics transmission based on orbital angular momentum multiplexed beams. Alexandria Eng. J. 61, 5203–5212 (2022). https://doi.org/10.1016/j.aej.2021.10.043

    Article  Google Scholar 

  • Soni, G.: Performance analysis of free space optical link under various attenuation effects. Sci. J. Circuits Syst. Signal Process. 7(2), 43–47 (2018). https://doi.org/10.11648/j.cssp.20180702.11

  • Sood, A., Kaushik, R.: 4 × 20 Gbps-60 GHz hybrid RoF-FSO transmission link for last mile connectivity. J. Opt. 2023, 1–11 (2023). https://doi.org/10.1007/s12596-023-01301-y

    Article  Google Scholar 

  • Vasani, E., Shah, V.: An effective design of hybrid spectrum slicing WDM–PDM in FSO communication system under different weather conditions. Wirel. Pers. Commun. 130, 777–800 (2023). https://doi.org/10.1007/s11277-023-10309-3

    Article  Google Scholar 

  • Xu, G., Zhang, N., Xu, M., Xu, Z., Zhang, Q., Song, Z.: Outage probability and average BER of UAV-assisted dual-hop FSO communication with amplify-and-forward relaying. IEEE Trans. Veh. Technol. 72, 8287–8302 (2023). https://doi.org/10.1109/TVT.2023.3252822

    Article  Google Scholar 

Download references

Funding

No funding.

Author information

Authors and Affiliations

Authors

Contributions

Yogesh Kumar Gupta: Conception and design, Manuscript preparation. Aditya Goel: Supervision and final approval.

Corresponding author

Correspondence to Yogesh Kumar Gupta.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, Y.K., Goel, A. Homodyne detection based multiple-beam WDM FSO communication system under various environmental conditions. Opt Quant Electron 56, 388 (2024). https://doi.org/10.1007/s11082-023-05835-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-05835-0

Keywords

Navigation