Skip to main content
Log in

Effect of different Gaussian-like laser profiles on electron energy gain in laser wakefield acceleration

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Laser wakefield acceleration (LWFA) of electrons is a highly promising and advanced technique within the field of laser plasma physics, which enables the generation of remarkably high-energy electron beams over a comparatively short distance. In this paper, we have used different Gaussian-like laser pulse profiles of the same amplitude of electric field and laser intensity in magnetized plasma. Generated wakefield and energy gain are calculated analytically by using equation of motion and Maxwell’s equation. Our results show that generated wakefield and energy gain are greatly affected by the shape of laser electric field profile. Pulse with broader electric field profile produces more effective LWFA under identical conditions of other parameters. Energy gain by electrons increases slightly with increase in the strength of external magnetic field. Results show that for the broadest laser profile, the magnetic field has more influence on wakefield production and electron energy gain. The role of laser pulse length is also analyzed. In this study, we have obtained a maximum of 151.6 MeV energy gain with experimentally feasible parameters. Our findings will assist researchers in selecting the most energy-efficient pulse profile for LWFA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding authors upon reasonable request.

References

  • Abedi-Varaki, M.: Electron acceleration by a circularly polarized electromagnetic wave publishing in plasma with a periodic magnetic field and an axial guide magnetic field. Mod. Phys. Lett. B 32(20), 1850225 (2018)

    MathSciNet  CAS  ADS  Google Scholar 

  • Abedi-Varaki, M., Daraei, M.E.: Impact of wiggler magnetic field on wakefield generation and electron acceleration by Gaussian, super-Gaussian and Bessel-Gaussian laser pulses propagating in collisionless plasma. J. Plasma Phys. 89(1), 905890114 (2023)

    Google Scholar 

  • Abedi-Varaki, M., Kant, N.: Magnetic field-assisted wakefield generation and electron acceleration by Gaussian and super-Gaussian laser pulses in plasma. Mod. Phys. Lett. B 36(07), 2150604 (2022)

    MathSciNet  CAS  ADS  Google Scholar 

  • Akou, H.: Excitation of upper-hybrid plasma wake wave by a low-frequency extraordinary electromagnetic wave. Contrib. Plasma Phys. 61(1), e202000149 (2021)

    CAS  ADS  Google Scholar 

  • Akou, H., Asri, M.: Dependence of plasma wake wave amplitude on the shape of Gaussian chirped laser pulse propagating in a plasma channel. Phys. Lett. A 380(20), 1729–1734 (2016)

    MathSciNet  CAS  ADS  Google Scholar 

  • Amiri, I., Rashed, A.N.Z., Yupapin, P.: Effects of order super Gaussian pulses on the performance of high data rate optical fiber channel in the presence of self phase modulation. J. Opt. Commun.commun. 44(1), 117–123 (2023)

    ADS  Google Scholar 

  • Asgharnejad, D., Mohsenpour, T., Mirzanejhad, S.: Investigation of self-focusing a Gaussian laser pulse in a weakly relativistic and ponderomotive regime inside a collisionless warm quantum plasma. Chin. J. Phys. 73, 304–313 (2021)

    MathSciNet  Google Scholar 

  • Askari, H.R., Shahidani, A.: Effect of magnetic field on production of wake field in laser–plasma interactions: Gaussian-like (GL) and rectangular–triangular (RT) pulses. Optik – Int. J. Light Electron Opt. 124(17), 3154–3161 (2013)

    Google Scholar 

  • Asri, M., Akou, H.: Influence of sense rotation of circularly polarized laser pulse on the wake-field acceleration in magnetized plasma. Optik (stuttg) 143, 142–149 (2017)

    CAS  ADS  Google Scholar 

  • Chen, Y., He, Y., Liu, L., Tian, Z., Zhang, X.-C., Dai, J.: Plasma-based terahertz wave photonics in gas and liquid phases. Photonics Insights 2(3), R06 (2023)

    Google Scholar 

  • Fallah, R., Khorashadizadeh, S.M.: Electron acceleration in a homogeneous plasma by Bessel-Gaussian and Gaussian pulses. Contrib. Plasma Phys. 58(9), 878–889 (2018a)

    CAS  ADS  Google Scholar 

  • Fallah, R., Khorashadizadeh, S.M.: Influence of Gaussian, super-Gaussian, and cosine-Gaussian pulse properties on the electron acceleration in a homogeneous plasma. IEEE Trans. Plasma Sci. 46(6), 2085–2090 (2018b)

    ADS  Google Scholar 

  • Gaur, B., Rawat, P., Purohit, G.: Effect of self-focused cosh Gaussian laser beam on the excitation of electron plasma wave and particle acceleration. Laser Part. Beams 34(4), 621–630 (2016)

    CAS  ADS  Google Scholar 

  • Giulietti, D., Curcio, A.: Self-phase modulation effects as laser produced plasma diagnostics. J. Instrum.instrum. 11(08), C08011–C08011 (2016)

    Google Scholar 

  • Giulietti, A., Giulietti, D.: Self-phase modulation in various regimes of intense laser–plasma interactions. J. Plasma Phys. 81(6), 495810608 (2015)

    Google Scholar 

  • Gopal, K., Gupta, D.N., Suk, H.: Pulse-length effect on laser wakefield acceleration of electrons by skewed laser pulses. IEEE Trans. Plasma Sci. 49(3), 1152–1158 (2021)

    ADS  Google Scholar 

  • Grigoriadis, A., Andrianaki, G., Tatarakis, M., Benis, E.P., Papadogiannis, N.A.: The role of laser chirp in relativistic electron acceleration using multi-electron gas targets. Plasma Phys. Control. Fusion 65(4), 044001 (2023)

    ADS  Google Scholar 

  • Gupta, D.N., Jain, A.: Terahertz radiation generation by a super-Gaussian laser pulse in a magnetized plasma. Optik (stuttg) 227, 165824 (2021)

    CAS  ADS  Google Scholar 

  • Gupta, D.N., Yadav, M., Jain, A., Kumar, S.: Electron bunch charge enhancement in laser wakefield acceleration using a flattened Gaussian laser pulse. Phys. Lett. Sect. a: Gen. Atomic Solid State Phys. 414, 127631 (2021)

    MathSciNet  CAS  Google Scholar 

  • Heydarzadeh, Y., Akou, H.: Effect of laser polarization mode on wake wave excitation in magnetized plasma. IEEE Trans. Plasma Sci. 48(9), 3088–3097 (2020)

    CAS  ADS  Google Scholar 

  • Kad, P., Singh, A.: Coupled effect of spatio-temporal variation of Laguerre–Gaussian laser pulse on electron acceleration in magneto-plasma. Waves Random Complex Media, 1–19 (2022)

  • Kad, P., Singh, A.: Combined effect of spatio-temporal dynamics of laser pulse on electron acceleration in relativistic plasma. IEEE Trans. Plasma Sci. 50(6), 1518–1523 (2022a)

    ADS  Google Scholar 

  • Kad, P., Singh, A.: Electron acceleration and spatio-temporal variation of Laguerre–Gaussian laser pulse in relativistic plasma. Eur. Phys. J. plus 137(8), 885 (2022b)

    Google Scholar 

  • Kim, H., et al.: Multi-GeV laser wakefield electron acceleration with PW lasers. Appl. Sci. 11(13), 5831 (2021)

    Google Scholar 

  • Krall, J., Ting, A., Esarey, E., Sprangle, P.: Enhanced acceleration in a self-modulated-laser wake-field accelerator. Phys. Rev. E 48(3), 2157–2161 (1993)

    CAS  ADS  Google Scholar 

  • Liu, Z., Wang, X., Hang, K.: Enhancement of trapping efficiency by utilizing a hollow sinh-Gaussian beam. Sci. Rep. 9(1), 10187 (2019)

    PubMed  PubMed Central  ADS  Google Scholar 

  • Maity, S., Mandal, D., Vashistha, A., Goswami, L.P., Das, A.: Harmonic generation in the interaction of laser with a magnetized overdense plasma. J. Plasma Phys. 87(5), 905870509 (2021)

    Google Scholar 

  • Malik, H.K., Kumar, S., Nishida, Y.: Electron acceleration by laser produced wake field: Pulse shape effect. Opt. Commun.commun. 280(2), 417–423 (2007)

    CAS  ADS  Google Scholar 

  • Martyanov, M., et al.: Suppressing small-scale self-focusing of high-power femtosecond pulses. High Power Laser Sci. Eng. 11, e28 (2023)

    Google Scholar 

  • Sharma, V., Kumar, S.: To study the effect of laser frequency-chirp on trapped electrons in laser wakefield acceleration. J. Phys. Conf. Ser. 2267(1), 012097 (2022)

    Google Scholar 

  • Sharma, V., Thakur, V., Kant, N.: Second harmonic generation of cosh-Gaussian laser beam in magnetized plasma. Opt. Quantum Electron. 52(10), 444 (2020)

    CAS  Google Scholar 

  • Sharma, V., Kumar, S., Kant, N., et al.: Excitation of the Laser wakefield by asymmetric chirped laser pulse in under dense plasma. J. Opt. (2023a). https://doi.org/10.1007/s12596-023-01326-3

    Article  Google Scholar 

  • Sharma, V., Kumar, S., Kant, N., et al.: Enhanced laser wakefield by beating of two co-propagating Gaussian laser pulses. J. Opt. (2023b). https://doi.org/10.1007/s12596-023-01250-6

    Article  Google Scholar 

  • Sharma, V., Kumar, S., Kant, N., Thakur, V.: Effect of frequency chirp and pulse length on laser wakefield excitation in under-dense plasma. Braz. J. Phys. 53(6), 157 (2023c)

    ADS  Google Scholar 

  • Sharma, V., Kumar, S., Kant, N., Thakur, V.: Enhanced laser wakefield acceleration by a circularly polarized laser pulse in obliquely magnetized under-dense plasma. Opt. Quantum Electron. 55(13), 1150 (2023d)

    Google Scholar 

  • Sohrabi, S., Jelvani, S., Samavati, K., Farhang Matin, L.: Effect of chirp parameter on the second harmonic efficiency in relativistic super-Gaussian laser-plasma interaction. Opt. Quantum Electron. 55(11), 942 (2023)

    Google Scholar 

  • Sun, W., Wang, X., Zhang, Y.: Terahertz generation from laser-induced plasma. Opto-Electron. Sci. 1(8), 220003–220003 (2022)

    CAS  Google Scholar 

  • Tajima, T., Dawson, J.M.: Laser electron accelerator. Phys. Rev. Lett. 43, 267 (1979)

    CAS  ADS  Google Scholar 

  • Thakur, V., Kant, N.: Effect of pulse slippage on density transition-based resonant third-harmonic generation of short-pulse laser in plasma. Front. Phys. (Beijing) 11(4), 115202 (2016)

    ADS  Google Scholar 

  • Thakur, V., Kant, N.: Optimization of wiggler wave number for density transition based second harmonic generation in laser plasma interaction. Optik (stuttg) 142, 455–462 (2017)

    ADS  Google Scholar 

  • Thakur, V., Kant, N.: Resonant second harmonic generation in plasma under exponential density ramp profile. Optik (stuttg) 168, 159–164 (2018)

    CAS  ADS  Google Scholar 

  • Thakur, V., Kant, N.: Combined effect of chirp and exponential density ramp on relativistic self-focusing of Hermite-Cosine-Gaussian laser in collisionless cold quantum plasma. Braz. J. Phys. 49(1), 113–118 (2019)

    ADS  Google Scholar 

  • Thakur, V., Vij, S., Sharma, V., Kant, N.: Influence of exponential density ramp on second harmonic generation by a short pulse laser in magnetized plasma. Optik (stuttg) 171, 523–528 (2018)

    CAS  ADS  Google Scholar 

  • Xia, X., Wei, G., Tian, K., Chen, J., Liang, Q.: Electron acceleration by relativistic pondermotive force in the interaction of intense laser pulse with an axially inhomogeneous underdense plasma. Mod. Phys. Lett. B 36(26n27), 2230003 (2022)

    MathSciNet  CAS  ADS  Google Scholar 

  • Yu, L., et al.: Guiding of Laguerre–Gaussian pulses in high-order plasma channels. Plasma Phys. Control. Fusion 64(7), 075009 (2022)

    ADS  Google Scholar 

  • Zhu, X.-L., et al.: Generation of 100-MeV attosecond electron bunches with terawatt few-cycle laser pulses. Phys. Rev. Appl. 15(4), 044039 (2021)

    CAS  ADS  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

VS: derivation, methodology, analytical modeling, and graph plotting; NK: numerical analysis and result discussion; VT: supervision, reviewing, and editing.

Corresponding author

Correspondence to Vishal Thakur.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, V., Kant, N. & Thakur, V. Effect of different Gaussian-like laser profiles on electron energy gain in laser wakefield acceleration. Opt Quant Electron 56, 45 (2024). https://doi.org/10.1007/s11082-023-05643-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-05643-6

Keywords

Navigation