Skip to main content
Log in

Improving the BER and PAPR performances of optical OFDM with lazy lifting wavelet transform

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Visible light communication (VLC), which is seen as an alternative and complementary technology to radio frequency (RF) communication systems, has emerged as a promising new generation system. Because of its potential to combat inter-symbol interference (ISI), orthogonal frequency division multiplexing (OFDM) has been validated as the best candidate for high-speed optical wireless communications (OWC). Asymmetrically clipped optical OFDM (ACO-OFDM), DC-biased optical OFDM (DCO-OFDM), and Flip-OFDM, which are made suitable for intensity modulation/direct detection (IM/DD) systems, are unipolar OFDM schemes widely accepted for OWC in the literature. In this study, it is proposed to combine the lifting wavelet transform (LLWT), which uses the lazy wavelet, with these three optical OFDM waveforms to increase the performance of the ACO-OFDM, DCO-OFDM, and Flip-OFDM systems proposed for OWC systems. In the environment where M-level color shift keying (M-CSK) and M-level quadrature amplitude modulation (M-QAM) modulations are used, proposed waveforms are tested with computer simulations for bit error rate (BER) and peak average power ratio (PAPR) performance measures. From the obtained simulation results, it is observed that the proposed transform technique performs an approximately 6 dB SNR improvement on the waveforms investigated in this study in both modulation methods for the 1E-4 BER value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

Not applicable.

Code availability

The codes in this study are available on request from the corresponding author.

References

  • Armstrong, J.: OFDM for optical communications. J Lightw Technol 27(3), 189–204 (2009)

    Article  ADS  Google Scholar 

  • Armstrong, J., Lowery, A.: Power efficient optical OFDM. Electron. Lett. 42(6), 370–372 (2006)

    Article  ADS  Google Scholar 

  • Armstrong, J., Schmidt, B.: Comparison of asymmetrically clipped optical OFDM and DC-Biased optical OFDM in AWGN. Commun Lett, IEEE 12(5), 343–345 (2008)

    Article  Google Scholar 

  • Azhar, A.H., Tuan-Anh, T., O’Brien, D.: “Demonstration of high-speed data transmission using Mimo-Ofdm visible light communications”, IEEE Global Communications Conference (GLOBECOM) Workshops, 5–10 December, 2010. FL, USA, Miami (2010)

    Google Scholar 

  • Azhar, A., Tran, T., O’Brien, D.: A gigabit/s indoor wireless transmission using MIMO-OFDM visible light communications. IEEE Photonics Technol. Lett. 25(2), 171–174 (2013)

    Article  ADS  Google Scholar 

  • Baig, S., Asif, H.M., Umer, T., Mumtaz, S., Shafiq, M., Choi, J.-G.: High data rate discrete wavelet transform-based PLC-VLC design for 5G communication systems. IEEE Access 6, 52490–52499 (2018). https://doi.org/10.1109/ACCESS.2018.2870138

    Article  Google Scholar 

  • Baig, M.S., Alresheedi, M.T., Mahdi, M.A., Abas, A.F.: A spectrally efficient modified asymmetrically and symmetrically clipped optical (mASCO)-OFDM for IM/DD systems. Opt. Quant. Electron. 55, 411 (2023). https://doi.org/10.1007/s11082-023-04611-4

    Article  Google Scholar 

  • Bouchet, O., et al.: Visible-light communication system enabling 73 Mb/s data streaming. IEEE Globecom Workshops 2010, 1042–1046 (2010). https://doi.org/10.1109/GLOCOMW.2010.5700092

    Article  Google Scholar 

  • Dahril, F.A., Ali, S., Jawaid, M.M.: A review of modulation schemes for visible light communication. Int J Comput Sci Network Secur 18(2), 117–125 (2018)

    Google Scholar 

  • Dimitrov, S., Sinanovic, S., Haas, H.: Clipping noise in OFDM-based optical wireless communication systems. IEEE Trans. Commun. 60(4), 1072–1081 (2012). https://doi.org/10.1109/TCOMM.2012.022712.100493

    Article  Google Scholar 

  • Dw, E. F., Samijayani, O. N., Rahmatia, S., Astharini, D., and Gunawan, D.: Design and performance investigation of discrete wavelet transform (DWT) based OFDM using 4-PAM for indoor VLC system. In: 2019 7th International Conference on Information and Communication Technology (ICoICT) (pp. 1–5). (2019). IEEE.https://doi.org/10.1109/ICoICT.2019.8835217

  • Elbakry, M.S., Mohammed, A., Ismail, T.: “Throughput improvement and PAPR reduction for OFDM-based VLC systems using an integrated STC-IMADJS technique. Opt. Quant. Electron. 54, 418 (2022). https://doi.org/10.1007/s11082-022-03802-9

    Article  Google Scholar 

  • Elgala, H.: A Study on the Impact of Nonlinear Characteristics of LEDs on Optical OFDM, PhD Dissertation, School of Engineering and Science Jacobs University, Bremen, (2010)

  • Elgala, H., Mesleh, R., Haas, H.: Indoor optical wireless communication: potential and state-of-art. IEEE Commun Magazine 49(9), 56–62 (2011)

    Article  Google Scholar 

  • Elgala, H., Mesleh, R., and Haas, H.: Practical considerations for indoor wireless optical system implementation using OFDM. In: 2009 10th International Conference on Telecommunications (pp. 25-29). IEEE, (2009)

  • Fernando N., Hong Yi and Viterbo E.: Flip-OFDM for optical wireless communications. In: 2011 IEEE Information Theory Workshop, Paraty, Brazil, (2011)

  • Gfeller, F.R., Bapst, U.: Wireless in-house data communication via diffuse infrared radiation. Proc. IEEE 67(11), 1474–1486 (1979)

    Article  Google Scholar 

  • Grubor, J., Randel, S., Langer, K.D., Walewski, J.W.: Broadband information broadcasting using LED-based interior lighting. J. Lightwave Technol. 26(24), 3883–3892 (2008)

    Article  ADS  Google Scholar 

  • Haas, H., Yin, L., Wang, Y., Chen, C.: What is LiFi? J. Lightwave Technol. 34(6), 1533–1544 (2015). https://doi.org/10.1109/JLT.2015.2510021

    Article  ADS  Google Scholar 

  • Hu, W.W., Lee, D.H.: PAPR reduction for visible light communication systems without side ınformation. IEEE Photo J 9(3), 1–11 (2017). https://doi.org/10.1109/JPHOT.2017.2700400

    Article  Google Scholar 

  • IEEE Standard Association.: IEEE standard for local and metropolitan area networks-Part 15.7: short-range wireless optical communication using visible light. IEEE: Piscataway, NZ, USA, 1-309 (2011)

  • JEITA: CP-1221 visible light communications system and JEITA: CP-1222 visible light ID system, (2007)

  • Karunatilaka, D., Zafar, F., Kalavally, V., Parthiban, R.: LED based ındoor visible light communications: state of the art. IEEE Commun Sur Tutor 17(3), 1649–1678 (2015). https://doi.org/10.1109/COMST.2015.2417576

    Article  Google Scholar 

  • Kepezkaya, T.: LLWT Based M-CSK Modulated Optical OFDM Design, MsC Dissertation, Graduate School of Natural and Applied Sciences/Department of Electrical and Electronics Engineering, Nuh Naci Yazgan University, Kayseri, (2023)

  • Khalid, A.M., Cossu, G., Corsini, R., Choudhury, P., Ciaramella, E.: 1-Gb/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation. IEEE Photonics J. 4(5), 1465–1473 (2012)

    Article  ADS  Google Scholar 

  • Komine, T., Nakagawa, M.: Fundamental analysis for visible-light communication system using LED lights. IEEE Trans. Consum. Electron. 50(1), 100–107 (2004). https://doi.org/10.1109/TCE.2004.1277847

    Article  Google Scholar 

  • Kulhavy, K.: Old but fascinating open hardware: 10MBit 1400m airlink w/LEDs”, http://www.ronja.twibright.com (22.04.2019), (2001)

  • Li, H., Chen, X., Huang, B., Tang, D., Chen, H.: High bandwidth visible light communications based on a post-equalization circuit. IEEE Photonics Technol. Lett. 26(2), 119–122 (2014)

    Article  ADS  Google Scholar 

  • Minh, H.L., O’Brien, D., Faulkner, G.: 100-Mb/s NRZ visible light communications using a postequalized white LED. IEEE Photonics Technol. Lett. 21(15), 1063–1065 (2009)

    Article  ADS  Google Scholar 

  • Miramirkhani, F., Uysal, M.: Channel modeling and characterization for visible light communications. IEEE Photo J 7(6), 1–16 (2015). https://doi.org/10.1109/JPHOT.2015.2504238

    Article  Google Scholar 

  • Netsianda, R. E., Ouahada, K. and Ndjiongue, R.: A Comparative Study of Different Modulations for Visible Light Communications. In: Internationational Conference on Advances in Computing, Control and Networking (ACCN-2017), (2017) Bangkok, Tayland

  • Öztürk, M.: Optical Power Distribution and OFDM/OFDMA Modulation for Visible Light Communication, Master of Science, Graduate School of Natural and Applied Sciences/Department of Electrical and Electronics Engineering, Yıldırım Beyazıt University, Ankara, (2016)

  • Pang, G., Kwan, T., Chan, C. H., and Liu, H.: LED traffic light as a communications device. In: Proceedings 199 IEEE/IEEJ/JSAI International Conference on Intelligent Transportation Systems (Cat. No. 99TH8383) (pp. 788-793). IEEE, (1999)

  • Sarbazi, E.: Channel Modelling and Charecterization for Visible Light Communicaitons, Özyeğin University, Master of Science, Graduate School of Natural and Applied Sciences/Department of Electrical and Electronics Engineering, İstanbul, (2014)

  • Shannon, C.E.: Communication in the presence of noise. Proc. IEEE 86(2), 447–457 (1998)

    Article  Google Scholar 

  • Tanaka, Y,. Haruyama, S. and Nakagawa, M.: Wireless Optical Transmissions With White Colored Led for Wireless Home Links. In: 11th IEEE International Symposium on Personal Indoor and Mobile Radio Communications, (Cat. No.00TH8525), Londra, United Kingdom, (2000)

  • Tsonev, D., Chun, H., Rajbhandari, S., McKendry, J.J.D., Videv, S., Gu, E., Haji, M., Watson, S., Kelly, A.E., Faulkner, G., Dawson, D.M., Haas, H., O’Brien, D.: A 3-Gb/s single-Led OFDM-based wireless VLC link using A gallium nitride μ LED. IEEE Photonics Technol. Lett. 26(7), 637–640 (2014)

    Article  ADS  Google Scholar 

  • Uysal, M., Ghassemlooy, Z., Bekkali, A., Kadri, A., Menouar, H.: Visible light communication for vehicular networking: performance study of a V2V system using a measured headlamp beam pattern model. IEEE Veh. Technol. Mag. 10(4), 45–53 (2015). https://doi.org/10.1109/MVT.2015.2481561

    Article  Google Scholar 

  • Uzun, P.: Investigation of Modulation Types in Visible Light Communication, MsC Dissertation, Graduate School of Natural and Applied Sciences/Department of Mechatronics Engineering, Gaziosmanpaşa University, Tokat, (2019)

  • VLCC, Visible light communication consortium, Accessed Sep 2021, URL http://www.vlcc.net/.

  • Vucic, J., Kottke, C., Nerreter, S., Buttner, A.: White light wireless transmission at 200Mb/s net data rate by use of discrete-multitone modulation. IEEE Photonics Technol. Lett. 21(20), 1511–1513 (2009b)

    Article  ADS  Google Scholar 

  • Vucic, J., Kottke, C., Nerreter, S., Langer, K., Walewski, J.W.: 513 Mbit/s visible light communications link based on DMT-modulation of a white LED. J. Lightwave Technol. 28(24), 3512–3518 (2010)

    Article  ADS  Google Scholar 

  • Vucic, J., Kottke, C., Nerreter, S., Habel, K., Buttner, A., Langer, K. D., and Walewski, J. W.: 125 Mbit/s over 5 m wireless distance by use of OOK-modulated phosphorescent white LEDs. In: 2009 35th European Conference on Optical Communication (pp. 1–2). IEEE. (2009)

  • Wu, F.M., Lin, C.T., Wei, C.C.: 1.1-Gb/s white-LED-based visible light communication employing carrier-less amplitude and phase modulation. IEEE Photonics Technol. Lett. 24(19), 1730–1732 (2012)

    Article  ADS  Google Scholar 

  • Yeşilkaya, A., Miramirkhani, F., Alsan, H.F., Basar, E., Panayırcı, E., Uysal, M.: Modelling of visible light channels and performance analysis for optical OFDM systems. EMO Sci J 5(9), 18–29 (2015)

    Google Scholar 

  • Yong J.: Modulation and demodulation apparatuses and methods for wired/wireless communication. Korea Patent WO2007/064 165 A, 07, (2007)

  • Yoon, S. H., Lee, K. S., Cha, J. S., Mariappan, V., Young, K. E., Woo, D. G., and Kim, J. U.: IEEE standard for local and metropolitan area networks—Part 15.7: short-range optical wireless communications. IEEE Std, 1-407. (2019) https://doi.org/10.1109/IEEESTD.2019.8697198.

  • Zhou Z., Lin B., Tang X., Chaudhary S., Lin C. and Zhang H.: Performance comparison of DFT-OFDM, DCT-OFDM and DWT-OFDM for visible light communications. In: 17th International Conference on Optical Communications and Networks (ICOCN 2018), pp. 1–4, Zhuhai, China, (2018). https://doi.org/10.1117/12.2522838

  • Zhu, H., Zhang, M., Wang, C., Guo, X., Zhang, Y.: “Design of a visible light internet access system”, seventh international conference on ubiquitous and future. Networks 2015, 49–52 (2015). https://doi.org/10.1109/ICUFN.2015.7182495

    Article  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

TK performed computer-based simulations, wrote the paper, and developed the system model. The development of the manuscript was supervised by AÖ. All of the authors have read and approved the contents of this manuscript.

Corresponding author

Correspondence to Ali Özen.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kepezkaya, T., Özen, A. Improving the BER and PAPR performances of optical OFDM with lazy lifting wavelet transform. Opt Quant Electron 55, 1181 (2023). https://doi.org/10.1007/s11082-023-05464-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-05464-7

Keywords

Navigation