Skip to main content
Log in

Soliton solutions for a (3 + 1)-dimensional nonlinear integrable equation

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In order to obtain the local structural solutions of nonlinear integrable systems, a (3 + 1)-dimensional nonlinear integrable equation is studied by using the multi-linear variable separation method, and the soliton, dromion, breather and instanton solutions containing arbitrary functions are obtained. Then, the abundant local excitations for the proposed equations are constructed by appropriately setting arbitrary function forms, and the evolution characteristics of system’s dromion solutions with time are investigated. In addition, the fractal structure of the separable solution of the system was described. The results show that the proposed method can obtain some special solutions and this method has been extended in different ways so as to enroll more low-dimensional functions in the solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

No applicable for this paper.

References

  • Akinyemi, L., Mirzazadeh, M., Badri, S.A., Hosseini, K.: Dynamical solitons for the perturbated Biswas–Milovic equation with Kudryashov’s law of refractive index using the first integral method. J. Modern Opt. 69(3), 172–182 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  • Dai, C.-Q., Yu, F.-B.: Special solitonic localized structures for the (3+1)-dimensional Burgers equation in water waves. Wave Motion 51, 52–59 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Dai, C.-Q., Fan, Y., Zhang, N., et al.: Re-observation on localized waves constructed by variable separation solutions of (1+1)-dimensional coupled integrable dispersionless equations via the projective Riccati equation method. Appl. Math. Lett. 96, 20–26 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  • Dai, C.-Q., Wang, Y.-Y., Fan, Y., Zhang, J.-F.: Interactions between exotic multi-valued solitons of the (2+1)-dimensional Korteweg-de Vries equation describing shallow water wave. Appl. Math. Model. 80, 506–515 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  • Darvishi, M.T., Najafi, M., Najafi, M.: New exact solutions for the (3+1)-dimensional breaking soliton equation. World Acad. Sci. Eng. Technol. 39, 824–827 (2010)

    Google Scholar 

  • Hossen, M.B., Roshid, H.O., Zulfikar Ali, M.: Dynamical structures of exact soliton solutions to Burgers’ equation via the bilinear approach. Partial Differ. Equ. Appl. Math. 3, 1–8 (2021)

    Article  Google Scholar 

  • Huang, X.-Z., Xu, G.-Q.: Variable separation solutions for (3+1)-dimensinal breaking soliton equation and its localized coherent structures. Commun. Appl. Math. Comput. 28(1), 40–46 (2014)

    MathSciNet  MATH  Google Scholar 

  • Ilhan, O.A., Abdulazeez, S.T., Manafian, J., et al.: Multiple rogue and soliton wave solutions to the generalized Konopelchenko–Dubrovsky–Kaup–Kupershmidt equation arising in fluid mechanics and plasma physics. Modern Phys. Lett. B 35(23), 1–23 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  • Kamdoum-T, P.H., Kenfack, J.A., Kofane, T.C.: Solitons solutions of the complex Ginzburg–Landau equation with saturation term using painleve truncated approach. J. Appl. Nonlinear Dyn 10(2), 279–286 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  • Komarov, A., Dmitriev, A., Komarov, K., et al.: Formation of color solitons and domains in fiber lasers. Opt. Lett. 47(5), 1029–1032 (2022)

    Article  ADS  Google Scholar 

  • Kumar, S., Niwas, M.: Exact closed-form solutions and dynamics of solitons for a (2+1)-dimensional universal hierarchy equation via Lie approach. Pramana J. Phys. 95(4), 1–12 (2021)

    Article  ADS  Google Scholar 

  • Kumar, S., Mohan, B., Kumar, A.: Generalized fifth-order nonlinear evolution equation for the Sawada–Kotera, Lax, and Caudrey–Dodd–Gibbon equations in plasma physics: Painlevé analysis and multi-soliton solutions. Phys. Scr. 97(3), 1–8 (2022)

    Article  ADS  Google Scholar 

  • Lashkin, V.M.: Perturbation theory for solitons of the Fokas–Lenells equation: inverse scattering transform approach. Phys. Rev. E 103(4), 1–14 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  • Lou, S.-Y.: A novel (2+1)-dimensional integrable KdV equation with peculiar solution structures. Chin. Phys. B 29(8), 1–6 (2020)

    Article  Google Scholar 

  • Nuray, S., Ekici, M., Biswas, A.: Stationary optical solitons with nonlinear chromatic dispersion and generalized temporal evolution by extended trial function approach. Chaos Solitons Fractals 147, 1–30 (2021)

    Article  MathSciNet  Google Scholar 

  • Sachin, K., Almusawa, H., Kumar, A., et al.: Some more closed-form invariant solutions and dynamical behavior of multiple solitons for the (2+1)-dimensional rdDym equation using the Lie symmetry approach. Results Phys. 24, 1–8 (2021)

    Article  Google Scholar 

  • Tang, C., Lou, S.: Multi-linear variabel separation approach to nonlinear systems. Front. Phys. China 4(2), 235–240 (2009)

    Article  ADS  Google Scholar 

  • Wu, J.-P.: Riemann–Hilbert approach and soliton classification for a nonlocal integrable nonlinear Schrödinger equation of reverse-time type. Nonlinear Dyn. 107(1), 1127–1139 (2022)

    Article  Google Scholar 

  • Xu, Y.-Q., Zheng, X.-X., Xin, J.: New non-traveling wave solutions for the (2+1)-dimensional variable coefficients Date–Jimbo–Kashiwara–Miwa equation. Chaos Solitons Fractals 155, 1–5 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  • Yıldırım, Topkara, E., Biswas, A., et al.: Cubic-quartic optical soliton perturbation with Lakshmanan–Porsezian–Daniel model by sine-Gordon equation approach. J. Opt. 50(2), 322–329 (2021)

    Article  Google Scholar 

  • Yu, W.-T., Liu, W.-J., Triki, H., et al.: Phase shift, oscillation and collision of the anti-dark solitons for the (3+1)-dimensional coupled nonlinear Schrödinger equation in an optical fiber communication system. Nonli Dyn. 97(2), 1253–1262 (2019)

    Article  MATH  Google Scholar 

  • Zayed, E.M.E., Alngar, M.E.M., Biswas, A., et al.: Solitons in nonlinear directional couplers with optical metamaterials by unified Riccati equation approach. Optik 241, 1–25 (2021)

    Article  ADS  Google Scholar 

  • Zhang, S., Cai, B.: Multi-soliton solutions of a variable-coefficient KdV hierarchy. Nonlinear Dyn. 78(3), 1593–1600 (2014)

    Article  MathSciNet  Google Scholar 

  • Zhang, S., Xia, T.: A generalized auxiliary equation method and its application to (2+1)-dimensional asymmetric Nizhnik–Novikov–Vesselov equations. J. Phys. A Math. Theor. 40(2), 227–248 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Zhang, S., Xu, B., Zhang, H.: Exact solutions of a KdV equation hierarchy with variable coefficients. Int. J. Comput. Math. 91(7), 1601–1616 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang, S., Li, J., Zhan, L.: A direct algorithm of exp-function method for non-linear evolution equations in fluids. Therm. Sci. 20(3), 881–884 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Funding

No funding received for this paper.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to this work.

Corresponding author

Correspondence to Shaofu Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing fnancial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S. Soliton solutions for a (3 + 1)-dimensional nonlinear integrable equation. Opt Quant Electron 55, 1209 (2023). https://doi.org/10.1007/s11082-023-05444-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-05444-x

Keywords

Navigation