Skip to main content
Log in

Diverse oscillating soliton structures for the (2+1)-dimensional Nizhnik–Novikov–Veselov equation

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

A new type of variable separation solutions for the (2+1)-dimensional Nizhnik–Novikov–Veselov equation is derived by means of an improved mapping approach. Based on the derived variable separation excitation, rich oscillating solitons such as rogue-wave, dromion, multi-dromion, solitoff, lump and fractal-type structures are presented by selecting appropriate functions of the general variable separation solution, and some of these solutions exhibit a rich dynamic, with a wide variety of qualitative behavior and structures that are exponentially localized, showing some novel features and interesting behaviors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M.J. Ablowitz, P.A. Clarkson, Soliton, Nonlinear Evolution Equations and Inverse Scattering (Cambridge University Press, New York, 1991)

    Book  Google Scholar 

  2. G.I. Stegemant, M. Segev, Optical spatial solitons and their interactions: universality and diversity. Science 286(5444), 1518–1523 (1999)

    Article  Google Scholar 

  3. J.P. Gollub, M.C. Cross, Nonlinear dynamics: Chaos in space and time. Nature 404, 710–711 (2000)

    Article  Google Scholar 

  4. M. Tajiri, H. Maesono, Resonant interactions of drift vortex solitons in a convective motion of a plasma. Phys. Rev. E 55, 3351–3362 (1997)

    Article  ADS  Google Scholar 

  5. M. Peyrard, A.R. Bishop, Statistical mechanics of a nonlinear model for DNA denaturation. Phys. Rev. Lett. 62, 2755–2758 (1989)

    Article  ADS  Google Scholar 

  6. M.J. Ablowitz, D.J. Kaup, A.C. Newll, H. Segur, Nonlinear evolution equations of physical significance. Phys. Rev. Lett. 31, 125–127 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  7. A. Biswas, Solitary waves for power law regularized long wave equation and R(m, n) equation. Nonlinear Dyn. 59, 423–426 (2010)

    Article  MathSciNet  Google Scholar 

  8. X. Lu, M. Peng, Painleve-integrablity and explicit solutions of the general two-coupled nonlinear Schrodinger system in the optical fiber communications. Nonlinear Dyn. 73, 405–410 (2013)

    Article  Google Scholar 

  9. A.M. Wazwaz, Multiple soliton solutions for three systems of Broer–Kaup–Kupeshmidt equations describing nonlinear and dispersive long gravity waves. Mod. Phys. Lett. B. 26, 125–126 (2012)

    Article  Google Scholar 

  10. V.B. Matveev, M.A. Salle, Darboux Transformation and Solitons (Springer, Berlin, 1991)

    Book  Google Scholar 

  11. R. Hirota, Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons. Phys. Rev. Lett. 27, 1192–1194 (1971)

    Article  ADS  Google Scholar 

  12. Kouichi Toda, Yu. Song-Ju, A study of the construction of equations in (2+1) dimensions. Inverse Probl. 17, 1053–1060 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  13. M.A. Abdou, The extended tanh-method and its applications for solving nonlinear physical models. Appl. Math. Comput. 190, 988–996 (2007)

    MathSciNet  MATH  Google Scholar 

  14. S. Zhang, Symbolic computation and new families of exact non-travelling wave solutions of (2+1)-dimensional Konopelchenko-dubrovsky equations. Chaos Solitons Fract. 31, 951–959 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  15. R. Hirota, The Direct Method in Soliton Theory (Cambridge University Press, Cambridge, 2004)

    Book  Google Scholar 

  16. Zh Xu, H.L. Chen, Z.D. Dai, Rogue wave for the (2+1)-dimensional Kadomtsev–Petviashvili equation. Appl. Math. Lett. 37, 34–38 (2014)

    Article  MathSciNet  Google Scholar 

  17. H.P. Zhu, Nonlinear tunneling for controllable rogue waves in two dimensional graded index wave guides. Nonlinear Dyn. 72, 873–882 (2013)

    Article  Google Scholar 

  18. ZhY Ma, C.L. Zheng, Two classes of fractal structures for the (2+1)-dimensional dispersive long wave equation. Chin. Phys. Soc. 15(01), 45–52 (2006)

    Article  ADS  Google Scholar 

  19. Z.T. Li, New localized excitations and cross-like fractal structures to the (2+1)-dimensional Broer–Kaup system. Pramana 83(3), 293–300 (2014)

    Article  ADS  Google Scholar 

  20. X. Lu, W.X. Ma, Study of lump dynamics based on a dimensionally reduced Hirota bilinear equation. Nonlinear Dyn. 85, 1217–1222 (2016)

    Article  MathSciNet  Google Scholar 

  21. Huang Lei, Sun Jian-an, Dou Fuquan et al., New variable separation solutions, localized structures and fractals in the (3+1)-dimensional nonlinear Burgers system. Acta. Phys. Sin. 56, 611–619 (2007)

    MATH  Google Scholar 

  22. L.Q. Kong, C.Q. Dai, Some discussions about variable separation of nonlinear models using Ricaati equation expansion method. Nonlinear Dyn. (2015). https://doi.org/10.1007/s11071-015-2089-y

    Article  Google Scholar 

  23. Y.J. Ren, H.Q. Zhang, New generalized hyperbolic and auto-Backlund transformation to find new exact solutions of the (2+1)-dimensional NNV equation. Phys. Lett. A 357, 438–448 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  24. K. Chandrasekharan, Elliptic Function (Springer, Berlin, 1978)

    Google Scholar 

  25. S.Y. Lou, J.Z. Lu, Special solutions from variable separation approach: Davey–Stewartson equation. J. Phys. A Math. Gen. 29, 4209–4215 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  26. C.L. Zheng, J.P. Fang, L.Q. Chen, New variable separation excitations of a (2+1)-dimensional Broer–Kaup–Kupershmidt system obtained by an extended mapping approach. Z. Naturforsch A 59, 912–918 (2004)

    Article  ADS  Google Scholar 

  27. X.J. Lai, M.Z. Jin, J.F. Zhang, Novel interacting phenomena in (2+1) dimensional AKNS system. Appl. Math. Comput. 218, 10056–10062 (2012)

    MathSciNet  MATH  Google Scholar 

  28. J.P. Fang, Q.B. Ren, C.L. Zheng, New exact solutions and fractal localized structures for the (2+1)-dimensional Boiti–Leon–Pempinelli system. Z. Naturforsch 60a, 245–251 (2005)

    ADS  Google Scholar 

  29. S.Y. Lou, H.Y. Ruan, Revisitation of the localized excitations of the (2+1)-dimensional KdV equation. J. Phys. A 34(2), 305–316 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  30. M. Boiti, J.J.P. Leon, M. Manna, F. Pempinelli, On the spectral transform of a Korteweg-de Vries equation in two spatial dimensions. Inv. Probl. 2(3), 271–280 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  31. P.G. Estevez, S. Leble, A wave equation in 2+1: painleve analysis and solutions. Inverse Probl. 11, 925–938 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  32. S.B. Leble, N.V. Ustinov, Thrid order spectral problems:reductions and Darboux transformations. Inverse Probl. 10, 617–633 (1994)

    Article  ADS  Google Scholar 

  33. X.Y. Jiao, J.H. Wang, Zhang H Q, An extended method for constructing travelling wave solutions to nonlinear partial differential equation. Commun. Theor. Phys. (Beijing, China) 44, 407–414 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  34. S. Zhang, T.C. Xia, Variable-coefficient Jacobi elliptic function expansion method for (2+1)-dimensional Nizhnik–Novikov–Veselov eequations. Appl. Math. Comput. 218, 1308–1316 (2011)

    MathSciNet  MATH  Google Scholar 

  35. S. Zhang, T.C. Xia, A generalized new auxiliary equation method and its applications to nonlinear partial differential equations. Phys. Lett. A 363, 356–360 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  36. M.s Osman, H.I. Abdel-Gawad, Multi-wave solutions of the (2+1)-dimensional Nizhnik–Novikov–Veselov equations with variable coefficients. EPJ Plus 130(10), 1–11 (2015)

    Google Scholar 

  37. S.Y. Lou, On the coherent structures of the Nizhnik–Novikov–Veselov equation. Phys. Lett. A 277, 94–100 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  38. K.W. Chow, “Solitoff” solutions of nonlinear evolution equation. J. Phys. Soc. Jpn. 65(7), 1971–1976 (1996)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by Natural Science Foundation of Yunnan Province under Grant no. 2013FZ113.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zitian Li.

Ethics declarations

Conflict of interest

The author declares that I have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z. Diverse oscillating soliton structures for the (2+1)-dimensional Nizhnik–Novikov–Veselov equation. Eur. Phys. J. Plus 135, 8 (2020). https://doi.org/10.1140/epjp/s13360-019-00019-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-019-00019-w

Navigation