Skip to main content
Log in

The effects of atmospheric turbulence on the spectral changes of diffracted pulsed hollow higher-order cosh-Gaussian beam

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this paper, we derive by using the Fourier transform and the extended Huygens-Fresnel, the analytical formulae for a truncated and non-truncated diffracted pulsed Hollow higher-order Cosh-Gaussian beam propagating in a turbulent atmosphere. Numerical examples are presented to illustrate the behavior of the spectral intensity of the propagated beam under the change of the initial beam parameters and the structure constant of the atmospheric turbulence. It is shown that the on-axis spectrum is blue-shifted, and the spectrum becomes red-shifted as the transverse distance grows. Also, some conclusions are presented to explain the effect of the considered medium and beam parameters on spectral shifts at different observation positions upon the propagation. Several studies could be derived from our principal result as special cases. It is to be noted that the obtained results in the present work would be helpful for the optical communications and remote sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

No datasets is used in the present study.

References

  • Abramowitz, M., Stegun, I.: Handbook of mathematical functions with formulas, graphs, and mathematical tables. U. S. Department of Commerce, Washington (1970)

    MATH  Google Scholar 

  • Andrews, L.C., Phillips, R.L.: Laser beam propagation through random media. SPIE Press, Washington (2005)

    Google Scholar 

  • Agrawal, G.P.: Far-field diffraction of pulsed optical beams in dispersive media. Opt. Commun. 167, 15–22 (1999)

    ADS  Google Scholar 

  • Belafhal, A., Hennani, S., Ez-zariy, L., Chafiq, A., Khouilid, M.: Propagation of truncated Bessel-modulated Gaussian beams in turbulent atmosphere. Phys. Chem. News 62, 36–43 (2011)

    Google Scholar 

  • Belafhal, A., Hricha, Z., Dalil-Essakali, L., Usman, T.: A note on some integrals involving Hermite polynomials and their applications. Adv. Math. Mod. Appl. 5, 313–319 (2020)

    Google Scholar 

  • Benzehoua, H., Belafhal, A.: Spectral properties of pulsed Laguerre higher-order cosh-Gaussian beam propagating through the turbulent atmosphere. Opt. Commun. 541, 129492–1294102 (2023a)

    Google Scholar 

  • Benzehoua, H., Belafhal, A.: Analyzing the spectral characteristics of a pulsed Laguerre higher-order cosh-Gaussian beam propagating through a paraxial ABCD optical system. Opt. Quant. Electron. 55, 663–681 (2023b)

    Google Scholar 

  • Benzehoua, H., Dalil-Essakali, L., Belafhal, A.: Analysis of the modulation depth of femtosecond dark hollow laser pulses. Opt. Quant. Electron. 53, 1–18 (2021a)

    Google Scholar 

  • Benzehoua, H., Dalil-Essakali, L., Belafhal, A.: Production of good quality holograms by the THz pulsed vortex beams. Opt. Quant. Electron. 54, 1–13 (2021b)

    Google Scholar 

  • Boufalah, F., Dalil-Essakali, L., Nebdi, H., Belafhal, A.: Effect of turbulent atmosphere on the on-axis average intensity of Pearcey-Gaussian beam. Chin. Phys. B 25, 064208–064214 (2016)

    Google Scholar 

  • Boufalah, F., Dalil-Essakali, L., Belafhal, A.: Scintillation index analysis of generalized Bessel–Laguerre–Gaussian beam. Opt. Quant. Electron. 54, 616–621 (2022)

    Google Scholar 

  • Cai, Y.: Propagation of various flat-topped beams in a turbulent atmosphere. J. Opt. 2 a: Pure Appl. Opt. 8, 537–545 (2006)

    ADS  Google Scholar 

  • Chang, S., Song, Y., Dong, Y., Dong, K.: Spreading properties of a multiGaussian Schell-model vortex beam in slanted atmospheric turbulence. Opt. Appl. 50, 83–94 (2020)

    Google Scholar 

  • Ding, C., Feng, X., Zhang, P., Wang, H., Zhang, Y.: Influence of oceanic turbulence on the spectral switches of partially coherent pulsed beams. J. Phys. Conf. Series 1, 1–9 (2018)

    Google Scholar 

  • Duan, M., Tian, Y., Zhang, Y., Li, J.: Influence of biological tissue and spatial correlation on spectral changes of Gaussian-Schell model vortex beam. Opt. Lasers Eng. 134, 106224–106230 (2020)

    Google Scholar 

  • Erdelyi, A., Magnus, W., Oberhettinger, F.: Tables of Integral Transforms. McGraw-Hill (1954)

  • Ez-Zariy, L., Boufalah, F., Dalil-Essakali, L., Belafhal, A.: Effects of a turbulent atmosphere on an apertured Lommel-Gaussian beam. Optik 127, 11534–11543 (2016)

    ADS  Google Scholar 

  • Gradshteyn, I.S., Ryzhik, I.M.: Table of integrals, series, and products, 7th edn. Academic Press, Amsterdam (2007)

    MATH  Google Scholar 

  • Gbur, G., Visser, T.D., Wolf, E.: Anomalous behavior of spectra near phase singularities of focused waves. Phys. Rev. Lett. 88, 013901–013906 (2001)

    ADS  Google Scholar 

  • Han, P.: Lattice spectroscopy. Opt. Lett. 34, 1303–1305 (2009)

    ADS  Google Scholar 

  • Hricha, Z., Lazrek, M., Yaalou, M., Belafhal, A.: Propagation of vortex cosine-hyperbolic-Gaussian beams in atmospheric turbulence. Opt. Quant. Electron. 53, 383–398 (2021)

    Google Scholar 

  • Ji, X.: Influence of turbulence on the spectrum of diffracted chirped Gaussian pulsed beams. Opt. Commun. 281, 3407–3413 (2008)

    ADS  Google Scholar 

  • Jo, J.H., Ri, S.G., Ju, T.Y., Pak, K.M., Hong, K.C.: Spectral behaviors of diffracted chirped Gaussian pulsed beam propagating in slant turbulent atmosphere path. Optik 244, 1–9 (2021)

    Google Scholar 

  • Jo, J.H., Ri, S.G., Ju, T.Y., Pak, K.M., Hong, K.C., Jang, S.H.: Effect of oceanic turbulence on the spectral changes of diffracted chirped Gaussian pulsed beam. Opt. Laser Technol. 153, 108200–108208 (2022)

    Google Scholar 

  • Kandpal, H.C., Vaishya, J.S.: Experimental observation of the phenomenon of spectral switching for a class of partially coherent light. IEEE J. Quant. Electron. 38, 336–339 (2002)

    ADS  Google Scholar 

  • Khannous, F., Boustimi, M., Nebdi, H., Belafhal, A.: Theoretical investigation on the hollow Gaussian beams propagating in atmospheric turbulent. Chin. J. Phys. 54, 194–204 (2016)

    MathSciNet  Google Scholar 

  • Korotkova, O., Farwell, N., Shchepakina, E.: Light scintillation in oceanic turbulence. Waves Random Complex Media 22, 260–266 (2012)

    ADS  MATH  Google Scholar 

  • Liu, D., Lü, B.: Spectral shifts and spectral switches in diffraction of ultrashort pulsed beams passing through a circular aperture. Optik 115, 447–454 (2004)

    ADS  Google Scholar 

  • Liu, D., Luo, X., Wang, G., Wang, Y.: Spectral and coherence properties of spectrally partially coherent Gaussian Schell-model pulsed beams propagating in turbulent atmosphere. Curr. Opt. Photonics 1, 271–277 (2017)

    Google Scholar 

  • Liu, D., Wang, Y.: Evolution properties of a radial phased-locked partially coherent Lorentz–Gauss array beam in oceanic turbulence. Opt. Laser Technol. 103, 33–41 (2018)

    ADS  Google Scholar 

  • Liu, D., Wang, Y., Wang, G., Yin, H., Wang, J.: The influence of oceanic turbulence on the spectral properties of chirped Gaussian pulsed beam. Opt. Laser Technol. 82, 76–81 (2016)

    ADS  Google Scholar 

  • Nossir, N., Dalil-Essakali, L., Belafhal, A.: Behavior of the central intensity of generalized Humbert–Gaussian beams against the atmospheric turbulence. Opt. Quant. Electron. 53, 665–677 (2021)

    Google Scholar 

  • Pan, L., Ding, C., Yuan, X.: Spectral shifts and spectral switches of twisted Gaussian Schell model beams passing through an aperture. Opt. Commun. 274, 100–104 (2007)

    ADS  Google Scholar 

  • Pu, J., Zhang, H., Nemoto, S.: Spectral shifts and spectral switches of partially coherent light passing through an aperture. Opt. Commun. 162, 57–63 (1999)

    ADS  Google Scholar 

  • Saad, F., Ebrahim, A.A.A., Belafhal, A.: Beam propagation factor of Hollow higher-order cosh-Gaussian beams. Opt. Quant. Electron. 54, 1–10 (2022)

    Google Scholar 

  • Saad, F., El Halba, E.M., Belafhal, A.: A theoretical study of the on-axis average intensity of generalized spiraling Bessel beams in a turbulent atmosphere. Opt. Quant. Electron. 49, 1–12 (2017)

    Google Scholar 

  • Tang, M., Zhao, D.: Spectral changes in stochastic anisotropic electromagnetic beams propagating through turbulent ocean. Opt. Commun. 312, 89–93 (2014)

    ADS  Google Scholar 

  • Wang, X., Liu, Z., Huang, K., Sun, J.: Spectral shifts generated by scattering of Gaussian Schell-model arrays beam from a deterministic medium. Opt. Commun. 387, 230–234 (2017)

    ADS  Google Scholar 

  • Wolf, E.: Red shifts and blue shifts of spectral lines emitted by two correlated sources. Phys. Rev. Lett. 58, 2646–2648 (1987)

    ADS  Google Scholar 

  • Wolf, E., Foley, J.T., Gori, F.: Frequency shifts of spectral lines produced by scattering from spatially random media. J. Opt. Soc. Am. A 6, 1142–1149 (1989)

    ADS  Google Scholar 

  • Wu, Y., Zhang, Y., Li, Y., Hu, Z.: Beam wander of Gaussian-Schell model beams propagating through oceanic turbulence. Opt. Commun. 371(15), 59–66 (2016)

    ADS  Google Scholar 

  • Yaalou, M., El Halba, E.M., Hricha, Z., Belafhal, A.: Propagation characteristics of dark and antidark Gaussian beams in turbulent atmosphere. Opt. Quant. Electron. 51(8), 1–10 (2019)

    Google Scholar 

  • Yadav, B.K., Raman, S., Kandpal, H.C.: Information exchange in free spacing using spectral switching of diffracted polychromatic light: possibilities and limitations. J. Opt. Soc. Am. A 25, 2952–2959 (2008)

    ADS  Google Scholar 

  • Yadav, B.K., Rizvi, S.A.M., Raman, S., Mehrotra, R., Kandpal, H.C.: Information encoding by spectral anomalies of spatially coherent light diffracted by an annular aperture. Opt. Commun. 269, 253–260 (2007)

    ADS  Google Scholar 

  • Zhang, E., Ji, X., Lü, B.: Changes in the spectrum of diffracted pulsed cosh-Gaussian beams propagating through atmospheric turbulence. J. Opt. a: Pure Appl. Opt. 9, 951–958 (2007)

    ADS  Google Scholar 

  • Zhu, B.Y., Bian, S.J., Tong, Y., Mou, X.Y., Cheng, K.: Spectral properties of partially coherent chirped airy pulsed beam in oceanic turbulence. Optoelectron. Lett. 17, 123–128 (2021)

    ADS  Google Scholar 

  • Zou, Q., Hu, Q.: Spectral anomalies of diffracted chirped pulsed super-Gaussian beam. Optik 127, 1967–1971 (2016)

    ADS  Google Scholar 

Download references

Funding

No funding is received from any organization for this work.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. All authors performed simulations, data collection and analysis and commented the present version of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to A. Belafhal.

Ethics declarations

Conflict of interest

The authors have no financial or proprietary interests in any material discussed in this article.

Ethical approval

This article does not contain any studies involving animals or human participants performed by any of the authors. We declare this manuscript is original, and is not currently considered for publication elsewhere. We further confirm that the order of authors listed in the manuscript has been approved by all of us.

Consent to participate

Informed consent was obtained from all authors.

Consent for publication

The authors confirm that there is informed consent to the publication of the data contained in the article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

In this Appendix, we will demonstrate the integral used in the theoretical formulation

$$H = \int\limits_{0}^{R} {e^{{ - p\rho^{2} + 2q\rho }} \rho^{\varepsilon } d\rho } = e^{{{{q^{2} } \mathord{\left/ {\vphantom {{q^{2} } p}} \right. \kern-0pt} p}}} \int\limits_{0}^{R} {e^{{ - p\left( {\rho - \delta } \right)^{2} }} \rho^{\varepsilon } d\rho } ,$$
(53)

where \(\delta = {q \mathord{\left/ {\vphantom {q p}} \right. \kern-0pt} p}\) and \({\text{Re}} \,p > 0.\)

With the help of the following change of variables \(t = \sqrt p \left( {\rho - \delta } \right)\) and the identities (Gradshteyn et al. 2007)

$$\left( {t + \sqrt p \delta } \right)^{\varepsilon } = \sum\limits_{r = 0}^{\varepsilon } {\left( {\begin{array}{*{20}c} \varepsilon \\ r \\ \end{array} } \right)\left( {\sqrt p \,\,\delta } \right)^{\varepsilon - r} t^{r} } ,$$
(54)
$$\int\limits_{0}^{\,\delta } {e^{{ - \mu t^{2} }} t^{2v - 1} dt\, = \,\,} \frac{1}{{2\mu^{v} }}\frac{{\left( {\mu \varepsilon^{2} } \right)^{v} }}{v}{}_{1}F_{1} \left( {v;\nu + 1; - \mu \varepsilon^{2} } \right),$$
(55)

the expression of integral H becomes

$$H = \frac{{e^{{{{q^{2} } \mathord{\left/ {\vphantom {{q^{2} } p}} \right. \kern-0pt} p}}} }}{{p^{{\frac{\varepsilon + 1}{2}}} }}\sum\limits_{r = 0,\varepsilon } {\left( {\begin{array}{*{20}c} \varepsilon \\ r \\ \end{array} } \right)} \left( {\sqrt p \,\,\delta } \right)^{\varepsilon - r} H_{r} ,$$
(56)

where

$$H_{r} = \left( { - 1} \right)^{r} H_{\delta } + H_{{\left( {R - \delta } \right)}} ,$$
(57)

with

$$H_{\xi } = \int\limits_{0}^{{\sqrt {p\,\,} \,\xi }} {e^{{ - t^{2} }} t^{r} dt\quad with\quad \left( {\xi = \delta \quad or\quad \left( {R - \delta } \right)} \right)} .$$
(58)

So, \(H_{\delta }\) and \(H_{{\left( {R - \delta } \right)}}\) can be written as

$$H_{\delta } = \frac{{\left( {p\delta^{2} } \right)^{{\frac{r + 1}{2}}} }}{{\left( {r + 1} \right)}}{}_{1}F_{1} \left( {\frac{r + 1}{2};\frac{r + 3}{2}; - p\delta^{2} } \right),$$
(59)

and

$$H_{{\left( {R - \delta } \right)}} = \frac{{\left[ {p\left( {R - \delta } \right)^{2} } \right]^{{\frac{r + 1}{2}}} }}{{\left( {r + 1} \right)}}{}_{1}F_{1} \left( {\frac{r + 1}{2};\frac{r + 3}{2}; - p\left( {R - \delta } \right)^{2} } \right).$$
(60)

The final expression of our integral can be rearranged as

$$\begin{aligned} \int\limits_{0}^{R} {\rho^{\varepsilon } e^{{ - p\rho^{2} + 2q\rho }} } d\rho = & \frac{{e^{{\frac{{q^{2} }}{p}}} }}{{p^{{\frac{\varepsilon + 1}{2}}} }}\sum\limits_{r = 0}^{\varepsilon } {\left( {\begin{array}{*{20}c} \varepsilon \\ r \\ \end{array} } \right)} \left( {\frac{q}{\sqrt p }} \right)^{\varepsilon - r} \\ & \quad \times \left[ {\left( { - 1} \right)^{r} \frac{{\left( {\frac{{q^{2} }}{p}} \right)^{{\frac{r + 1}{2}}} }}{r + 1}{}_{1}F_{1} \left( {\frac{r + 1}{2};\frac{r + 3}{2}; - \frac{{q^{2} }}{p}} \right) + \frac{{\left[ {p\left( {R - \frac{q}{p}} \right)^{2} } \right]^{{\frac{r + 1}{2}}} }}{r + 1}{}_{1}F_{1} \left( {\frac{r + 1}{2};\frac{r + 3}{2}; - p\left( {R - \frac{q}{p}} \right)^{2} } \right)} \right]. \\ \end{aligned}$$
(61)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benzehoua, H., Belafhal, A. The effects of atmospheric turbulence on the spectral changes of diffracted pulsed hollow higher-order cosh-Gaussian beam. Opt Quant Electron 55, 973 (2023). https://doi.org/10.1007/s11082-023-05205-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-05205-w

Keywords

Navigation