Skip to main content
Log in

Evolution of the partially coherent Generalized Flattened Hermite-Cosh-Gaussian beam through a turbulent atmosphere

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

The current paper investigates the impact of a turbulent atmosphere on the propagation of a partially coherent Generalized Flattened Hermite Cosh-Gaussian (GFHChG) beam. The evaluation of a theoretical expression of the average intensity distribution for the partially coherent GFHChG beam is based on the extended Huygens-Fresnel diffraction integral and the Rytov’s quadratic approximation. The results of some laser beams are deduced as special cases from the present work. The behavior of the studied beam which is propagating through a turbulent atmosphere is analyzed through numerical illustrations. Results indicate that the partially coherent GFHChG beam successively changes shape from a doughnut to a flattened then to a Gaussian profile during its propagation in a turbulent atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Andrews, L.C., Phillips, R.L.: Laser beam propagation through random media, 2nd edn. SPIE Press, Bellingham, Wash (2005)

    Book  Google Scholar 

  • Bao-Suan, C., Ji-Xiong, P.: Propagation of Gauss-Bessel beams in turbulent atmosphere. Chin. Phys. B 18, 1033–1039 (2009)

    Article  ADS  Google Scholar 

  • Belafhal, A., Ibnchaikh, M.: Propagation properties of Hermite-cosh-Gaussian laser beams. Opt. Commun. 186, 269–276 (2000)

    Article  ADS  Google Scholar 

  • Belafhal, A., Hennani, S., Ez-zariy, L., Chafiq, A., Khouilid, M.: Propagation of truncated Bessel-modulated Gaussian beams in turbulent atmosphere. Phys. Chem. News 62, 36–43 (2011)

    Google Scholar 

  • A. Belafhal, Z. Hricha, L. Dalil-Essakali, T. Usman, A note on some integrals involving Hermite polynomials encountered in caustic optics, Submitted (2019).

  • Boufalah, F., Dalil-Essakali, L., Nebdi, H., Belafhal, A.: Effect of turbulent atmosphere on the on-axis average intensity of Pearcey-Gaussian beam. Chin. Phys. B 25, 064208–064213 (2016)

    Article  Google Scholar 

  • Boufalah, F., Dalil-Essakali, L., Ez-zariy, L., Belafhal, A.: Introduction of generalized Bessel–Laguerre–Gaussian beams and its central intensity travelling a turbulent atmosphere. Opt. Quant Electron. 50, 305–324 (2018)

    Article  Google Scholar 

  • Cai, Y., He, S.: Propagation of a partially coherent twisted anisotropic Gaussian Schell-model beam in a turbulent atmosphere. Appl. Phys. Lett. 89, 041117–104119 (2006)

    Article  ADS  Google Scholar 

  • Chib, S., Dalil-Essakali, L., Belafhal, A.: Propagation properties of a novel generalized Flattened Hermite-Cosh-Gaussian light beam. Opt. Quant. Electron. 52, 277 (2020)

    Article  Google Scholar 

  • Chu, X., Ni, Y., Zhou, G.: Propagation analysis of flattened circular Gaussian beams with a circular aperture in turbulent atmosphere. Opt. Commun. 274, 274–280 (2007)

    Article  ADS  Google Scholar 

  • Dogariu, A., Amarande, S.: Propagation of partially coherent beams: turbulence-induced degradation. Opt. Lett. 28, 10–12 (2003)

    Article  ADS  Google Scholar 

  • Eyyuboğlu, H.T.: Propagation of Hermite-cosh-Gaussian laser beams in turbulent atmosphere. Opt. Commun. 245, 37–47 (2005)

    Article  ADS  Google Scholar 

  • Eyyuboğlu, H.T.: Propagation and coherence properties of higher order partially coherent dark hollow beams in turbulence. Opt. Laser Technol. 40, 156–166 (2008)

    Article  ADS  Google Scholar 

  • Eyyuboğlu, H.T., Baykal, Y.: Average intensity and spreading of cosh-Gaussian laser beams in the turbulent atmosphere. Appl. Opt. 44, 976–983 (2005)

    Article  ADS  Google Scholar 

  • Eyyuboğlu, H.T., Sermutlu, E.: Partially coherent Airy beam and its propagation in turbulent media. Appl. Phys. B 110, 451–457 (2013)

    Article  ADS  Google Scholar 

  • Ez-zariy, L., Boufalah, F., Dalil-Essakali, L., Belafhal, A.: Effects of a turbulent atmosphere on an apertured Lommel-Gaussian beam. Optik 127, 11534–11543 (2016)

    Article  ADS  Google Scholar 

  • Gbur, G.: Partially coherent beam propagation in atmospheric turbulence. J. Opt. Soc. Am. A 31, 2038–2045 (2014)

    Article  ADS  Google Scholar 

  • Gradshteyn, I.S., Ryzhik, I.M., Jeffrey, A.: Table of integrals, series, and products, 7th edn. Academic Press Amsterdam, Boston (2007)

    MATH  Google Scholar 

  • Hennani, S., Barmaki, S., Ez-zariy, L., Nebdi, H., Belafhal, A.: A theoretical investigation of the axial intensity distribution of truncated MQBG beam in a turbulent atmosphere. Phys. Chem. News 69, 44–51 (2013)

    Google Scholar 

  • Jian, W.: Propagation of a Gaussian-Schell beam through turbulent media. J. Mod. Opt. 37, 671–684 (1990)

    Article  ADS  Google Scholar 

  • Korotkova, O.: Model for a partially coherent Gaussian beam in atmospheric turbulence with application in Lasercom. Opt. Eng. 43, 330–341 (2004)

    Article  ADS  Google Scholar 

  • Lin, H., Pu, J.: Propagation properties of partially coherent radially polarized beam in a turbulent atmosphere. J. Mod. Opt. 56, 1296–1303 (2009)

    Article  ADS  Google Scholar 

  • Saad, F., El Halba, E.M., Belafhal, A.: A theoretical study of the on-axis average intensity of generalized spiraling Bessel beams in a turbulent atmosphere. Opt. Quant. Electron. 49, 94–105 (2017)

    Article  Google Scholar 

  • Shirai, T., Dogariu, A., Wolf, E.: Mode analysis of spreading of partially coherent beams propagating through atmospheric turbulence. J. Opt. Soc. Am. A 20, 1094–1102 (2003)

    Article  ADS  Google Scholar 

  • van Dijk, T., Fischer, D.G., Visser, T.D., Wolf, E.: Effects of spatial coherence on the angular distribution of radiant intensity generated by scattering on a sphere. Phys. Rev. Lett. 104, 173902–173905 (2010)

    Article  ADS  Google Scholar 

  • Wang, T.: Propagation of partially coherent vortex beams in a turbulent atmosphere. Opt. Eng. 47, 036002–036006 (2008)

    Article  ADS  Google Scholar 

  • Wu, G., Cai, Y.: Detection of a semirough target in turbulent atmosphere by a partially coherent beam. Opt. Lett. 36, 1939–1941 (2011)

    Article  ADS  Google Scholar 

  • Yaalou, M., El Halba, E.M., Hricha, Z., Belafhal, A.: Propagation characteristics of dark and antidark Gaussian beams in turbulent atmosphere. Opt. Quant. Electron. 51, 255–264 (2019)

    Article  Google Scholar 

  • Yang, A., Zhang, E., Ji, X., Lü, B.: Propagation properties of partially coherent Hermite–cosh-Gaussian beams through atmospheric turbulence. Opt. Laser Technol. 41, 714–722 (2009)

    Article  ADS  Google Scholar 

  • Yura, H.T.: Mutual coherence function of a finite cross section optical beam propagating in a turbulent medium. Appl. Opt. 11, 1399–1406 (1972)

    Article  ADS  Google Scholar 

  • Zhou, G.: Propagation of a higher-order cosh-Gaussian beam in turbulent atmosphere. Opt. Express 19, 3945–3951 (2011)

    Article  ADS  Google Scholar 

  • Zhu, K., Tang, H., Gao, Y.: A new set of flattened light beams. J. Opt. Pure Appl. Opt. 4, 33–36 (2002)

    Article  ADS  Google Scholar 

  • Zhuang, S.L., Yu, F.T.S.: Apparent transfer function for partially coherent optical information processing. Appl. Phys. B 28, 359–366 (1982)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Belafhal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chib, S., Dalil-Essakali, L. & Belafhal, A. Evolution of the partially coherent Generalized Flattened Hermite-Cosh-Gaussian beam through a turbulent atmosphere. Opt Quant Electron 52, 484 (2020). https://doi.org/10.1007/s11082-020-02592-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-020-02592-2

Keywords

Navigation