Skip to main content
Log in

A highly birefringent and compact nonlinear photonic crystal fiber for next-generation optical fiber applications: design and investigation

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Birefringence is a critical aspect in fiber optic-based applications, particularly in preserving polarization and achieving nonlinear-based phase matching conditions. This study proposes a new highly birefringent nonlinear photonic crystal fiber that is simple and compact. The proposed fiber structure features only six air holes in the cladding to confine light at the core, resulting in a more compact design. The fiber exhibits an observed birefringence of about 0.0113, a nonlinear coefficient of about 86.64 W−1 km−1, and a confinement loss of about 10−18 dB/km. The measured V-parameter of about 1.108 ensures single-mode operation of the proposed fiber. The compact design and promising properties of the proposed fiber structure make it suitable for a variety of fiber optic-based applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of data and materials

The data and materials will be applicable upon request.

References

  • Agbemabiese, P.A., Akowuah, E.K.: Numerical analysis of photonic crystal fiber of ultra-high birefringence and high nonlinearity. Sci Rep 10, 21182 (2020). https://doi.org/10.1038/s41598-020-77114-x

    Article  ADS  Google Scholar 

  • Alishacelestin, X., Raja, A.S., Muthu, K.E., Selvendran, S.: A novel ultra-high birefringent photonic crystal fiber for nonlinear applications. Braz. J. Phys. 51(3), 605–617 (2021a)

  • Alishacelestin, X., Raja, A.S., & Selvendran, S.: A highly birefringent photonic crystal fiber with compact cladding layers suitable for fiber optic gyroscope application. Laser Phys. 31(6), 1–6 (2021b). https://doi.org/10.1088/1555-6611/ac0049

  • Alkeskjold, T., Lægsgaard, J., Bjarklev, A., Hermann, D., Anawati, A., Broeng, J., Li, J., Wu, S.T.: All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers. Opt Express 12, 5857–5871 (2004). https://doi.org/10.1364/OPEX.12.005857

    Article  ADS  Google Scholar 

  • Amouzad Mahdiraji, G., Chow, D. M., Sandoghchi, S. R., Amirkhan, F., Dermosesian, E., Yeo, K. S., & Mahamd Adikan, F. R.: Challenges and solutions in fabrication of silica-based photonic crystal fibers: an experimental study. Fiber Integr. Opt. 33(1–2), 85–104 (2014). https://doi.org/10.1080/01468030.2013.879680

  • Anik, M.H.K. et al.: Numerical design and investigation of circularly segmented air holes-assisted hollow-core terahertz waveguide as optical chemical sensor. In: IEEE Access, vol. 9, pp. 86155–86165, 2021. https://doi.org/10.1109/ACCESS.2021.3089424

  • Arif, M.F.H., Hossain, M.M., Islam, N., Khaled, S.M.: A nonlinear photonic crystal fiber for liquid sensing application with high birefringence and low confinement loss. In: Sensing and bio-sensing research, vol. 22, 100252, ISSN 2214-1804 (2019)

  • Baul, A., Hossain, M.B., Sakib, M.N., Rana, M.M., Hossain, M.A., Hossain, M.S., Islam, M.M., Amiri, I.S.: High birefringence and negative dispersion based modified decagonal photonic crystal fibers: a numerical study. J. Opt. Commun. 1–11, 2020. https://doi.org/10.1515/joc-2020-0015

  • Bertoncini, A., Liberale, C.: 3D printed waveguides based on photonic crystal fiber designs for complex fiber-end photonic devices. Optica 7, 1487–1494 (2020). https://doi.org/10.1364/OPTICA.397281

    Article  ADS  Google Scholar 

  • Birks, T., Knight, J., Russell, P.: Endlessly single mode photonic crystal fiber. Opt. Lett. 22(13), 961–963 (1997)

    Article  ADS  Google Scholar 

  • Bise, R.T., Trevor, D.: Sol-gel derived microstructured fiber: fabrication and characterization. In: Optics InfoBase Conference Papers 3(3), 3 (2005). https://doi.org/10.1109/OFC.2005.192772

  • Chen, H.L., Li, S.G., Fan, Z.K., An, G.W., Li, J.S., Han, Y.: A novel polarization splitter based on dual-core photonic crystal fiber with a liquid crystal modulation core. IEEE Photon. J. 6(4), 2201109 (2014). https://doi.org/10.1109/JPHOT.2014.2337874

  • Devika, V., Mani Rajan, M.S.: Hexagonal PCF of honeycomb lattice with high birefringence and high nonlinearity. Int. J. Mod. Phys. B 34(10), 2050094 (2020). https://doi.org/10.1142/S0217979220500940

  • Eggleton, B., Kerbage, C., Westbrook, P., Windeler, R., Hale, A.: Microstructure optical fiber devices. Opt Express 9, 698–713 (2001). https://doi.org/10.1364/OE.9.000698

    Article  ADS  Google Scholar 

  • Gangwar, R.K., Singh, V.K.: Study of highly birefringence dispersion shifted photonic crystal fiber with asymmetrical cladding. Opt. J. 127(24), 11854–11859 (2016). https://doi.org/10.1016/j.ijleo.2016.09.101

  • Guo, Y., Wang, X., Xing, Z., & Lou, S.: Hybrid hollow-core polarization-maintaining fiber with high birefringence and wide single mode bandwidth. Results Phys. 29, 104725. ISSN 2211-3797 (2021). https://doi.org/10.1016/j.rinp.2021.104725

  • Hasan, M.I., Abdur Razzak, S.M., Habib, M.S.: Design and characterization of highly birefringent residual dispersion compensating photonic crystal fiber. J. Lightw. Technol. 32(23), 4578–4584 (2014). https://doi.org/10.1109/JLT.2014.2359138

  • Hasan, M.R., Anower, M.S., Hasan, M.I.: A polarization maintaining single mode photonic crystal fiber for residual dispersion compensation. IEEE Photon. Technol. Lett. 28(16), 1782–1785 (2016) https://doi.org/10.1109/LPT.2016.2572141

  • Hossain, Md.M, Kabir, Md.A., Hassan, Md.M., Rahman Parag, Md.A., Hossain, Md.N., Paul, B.K., Uddin, M.S., Ahmed, K.: Proposal of a highly birefringent bow-tie photonic crystal fiber for nonlinear applications. In: ICONCS, vol. 325, pp. 659–670. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-52856-0_52

  • Huang, T., Liao, J., Fu, S., Tang, M., Shum, P., Liu, D.: Slot spiral silicon photonic crystal fiber with property of both high birefringence and high nonlinearity. IEEE Photon. J. 6(3), 1–7 (2014). https://doi.org/10.1109/JPHOT.2014.2323312

  • Kumar, V.R.K., George, A.K., Reeves, W.H., Knight, J.C., Russell, P.S.J., Omenetto, F. G., Taylor, A.J.: Extruded soft glass photonic crystal fiber for ultrabroad supercontinuum generation. Opt. Express 10, 1520–1525 (2002). https://doi.org/10.1364/OE.10.001520

  • Lee, H.W., Schmidt, M.A., Tyagi, H.K., Sempere, L.P., Fussell, P.S.: Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber. Appl Phys Lett 93, 111102 (2008). doi:https://doi.org/10.1063/1.2982083

  • Le, H., Hoang, V.T., Stepniewski, G., Lê Cảnh, T., Ngoc, V.T.M., Kasztelanic, R., Klimczak, M., Pniewski, J., Khoa, D., Heidt, A., Buczynski, R.: Low pump power coherent supercontinuum generation in heavy metal oxide solid-core photonic crystal fiber infiltrated with carbon tetrachloride covering 930–2500 nm. Opt. Express. 29, 39586–39600 (2021). doi:https://doi.org/10.1364/OE.443666

  • Liao, J., Sun, J., Du, M., Qin, Y.: Highly nonlinear dispersion-flattened slotted spiral photonic crystal fibers. IEEE Photon. Technol. Lett. 26(4), 380–383 (2014). https://doi.org/10.1109/LPT.2013.2293661

  • Liao, J, Yang, F., Xie, Y., Wang, X., Huang, T., Xiong, Z., Kuang, F.: Ultrahigh birefringent nonlinear slot silicon microfiber with low dispersion. IEEE Photon. Technol. Lett. 27(17), 1868–1871 (2017) https://doi.org/10.1109/LPT.2015.2443986

  • Michalik, D., Anuszkiewicz, A., Buczynski, R., Kasztelanic, R.: Toward highly birefringent silica Large Mode Area optical fibers with anisotropic core. Opt. Express 29, 22883–22899 (2021)

    Article  ADS  Google Scholar 

  • Pysz, D., et al.: Stack and draw fabrication of soft glass microstructured fiber optics. Bull. Polish Acad. Sci. Technol. Sci. 62(4), 667–682 (2014). https://doi.org/10.2478/bpasts-2014-0073

    Article  Google Scholar 

  • Qiang, Xu., Li, K., Copner, N., Lin, S.: An ultrashort wavelength multi/demultiplexer via rectangular liquid-infiltrated dual-core polymer optical fiber. Materials 12, 1709 (2019). https://doi.org/10.3390/ma12101709

    Article  ADS  Google Scholar 

  • Rahaman, Md.E., Mondal, H.S., Hossain, Md.B., Hossain, Md.M., Ahsan, Md.S., Saha, R.: Simulation of a highly birefringent photonic crystal fiber in terahertz frequency region. SN Appl. Sci. 2, 1435 (2020). https://doi.org/10.1007/s42452-020-03210-2

  • Ren, G., Shum, P., Yu, X., Hu, J., Wang, G., Gong, Y.: Polarization dependent guiding in liquid crystal filled photonic crystal fibers. Opt Commun 281, 1598–1606 (2008). https://doi.org/10.1016/j.optcom.2007.11.084

    Article  ADS  Google Scholar 

  • Saha, R., Hossain, M.M., Rahaman, M.E., et al.: Design and analysis of high birefringence and nonlinearity with small confinement loss photonic crystal fiber. Front. Optoelectron. 12, 165–173 (2019). https://doi.org/10.1007/s12200-018-0837-6

    Article  Google Scholar 

  • Samiul Habib, M., Selim Habib, M., Hasan, M.I., Razzak, S.M.A.: A single mode ultra-flat high negative residual dispersion compensating photonic crystal fiber. Opt. Fiber Technol. 20(4), 328–332 (2014). https://doi.org/10.1016/J.YOFTE.2014.03.005

  • Schmidt, M., Russell, P.: Long-range spiralling surface plasmon modes on metallic nanowires. Opt. Express 16(18), 13617–13623 (2008). https://doi.org/10.1364/OE.16.013617

    Article  ADS  Google Scholar 

  • Selvendran, S., Sivanantharaja, A., Yogalakshmi, S.: A highly sensitive Bezier polygonal hollow core photonic crystal fiber biosensor based on surface plasmon resonance. Opt. – Int. J. Light Electron Opt. 171, 109–113 (2018). https://doi.org/10.1016/j.ijleo.2018.06.039

    Article  Google Scholar 

  • Song, N., Gao, F., Xu, X., Zhang, Z.: Two-layer polarization-maintaining solid-core photonic crystal fiber. IEEE Photonics J. 10(1), 2200308 (2018). https://doi.org/10.1109/JPHOT.2018.2794474

  • Song, N., Cai, W., Song, J., Jin, J., Wu, C.: Structure optimization of small-diameter polarization-maintaining photonic crystal fiber for mini coil of spaceborne miniature fiber-optic gyroscope. Appl. Opt. 54, 9831 (2015)

    Article  ADS  Google Scholar 

  • Sultana, J., Islam, Md.S., Faisal, M., Islam, M.R., Ng, B.W.-H., Heike, E.-H., Abbott, D.: Highly birefringent elliptical core photonic crystal fiber for terahertz application. Opt. Commun. 407, 92–96 (2018). https://doi.org/10.1016/j.optcom.2017.09.020

  • Tyagi, H., Schmidt, M., Sempere, L.P., Russell, P.: Optical properties of photonic crystal fiber with integral micron-sized Ge wire. Opt. Express 16(22), 17227–17236 (2008). https://doi.org/10.1364/OE.16.017227

    Article  ADS  Google Scholar 

  • Upadhyay, A., Singh, S., Sharma, D., & Taya, S. A.: Analysis of proposed PCF with square air hole for revolutionary high birefringence and nonlinearity. In: Photonics and Nanostructures - Fundamentals and Applications, vol. 43 (2021). https://doi.org/10.1016/j.photonics.2021.100896

  • Yakasai, I. K., Abas, P. E., Suhaimi, H., & Begum, F.: Low loss and highly birefringent photonic crystal fibre for terahertz applications. Opt. – Int. J. Light Electron Opt. 206, 164321 (2020). https://doi.org/10.1016/j.ijleo.2020.164321

  • Yogalakshmi, S., Selvendran, S., Sivanantha Raja, A.: Design and analysis of a photonic crystal fiber-based polarization filter using surface plasmon resonance. Laser Phys. 26, 056201 (2016). https://doi.org/10.1088/1054-660X/26/5/056201

    Article  ADS  Google Scholar 

  • Zhang, P., Zhang, J., Yang, P., Dai, S., Wang, X., & Zhang, W.: Fabrication of chalcogenide glass photonic crystal fibers with mechanical drilling. Opt. Fiber Technol. 26(Part B), 176–179 (2015). https://doi.org/10.1016/j.yofte.2015.09.002

Download references

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Contributions

C. Priyadharshini: Conceptualization, Methodology, Data curation, Software, Writing – original draft. S. Selvendran: Visualization, Investigation. A.Sivanantharaja: Supervision. Srikanth Itapu: Writing – review & editing. Rudrakant Sollapur: Validation,formal analysis.

Corresponding authors

Correspondence to C. Priyadharshini or S. Selvendran.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Priyadharshini, C., Selvendran, S., Sivanantha Raja, A. et al. A highly birefringent and compact nonlinear photonic crystal fiber for next-generation optical fiber applications: design and investigation. Opt Quant Electron 55, 916 (2023). https://doi.org/10.1007/s11082-023-05051-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-05051-w

Keywords

Navigation