Skip to main content
Log in

Systematic design of highly birefringent photonic crystal fibers

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

This article systematically designs and theoretically investigates a highly birefringent photonic crystal fiber (HB-PCF) for reducing the effect of polarization mode dispersion in high-speed optical communication system. To achieve a high modal birefringence in the proposed HB-PCF, four types of HB-PCF were designed by adding some birefringence-enhancing factors step by step in sequence. Ultimately, as per the simulation results, in the condition of single-mode operation, the numeric values of modal birefringence and confinement loss of the proposed HB-PCF is about 21.85 × 10− 3 and 0.47 dB/km at the habitual wavelength λ = 1.55 µm of optical-fiber communications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. K. Suzuki, H. Kubota, S. Kawanishi, M. Tanaka, M. Fujita, Opt. Express 9, 676 (2001)

    Article  ADS  Google Scholar 

  2. J. M. Hsu, G.S. Ye, D.L. Ye, Fiber Integr. Opt. 31, 11 (2012)

    Article  ADS  Google Scholar 

  3. J. M. Hsu, C.L. Lee, J.S. Horng, J.J.H. Kung, Opt. Commun. 298, 125–128 (2013)

  4. T.P. Hansen, J. Broeng, S.E.B. Libori, E. Knudsen, A. Bjarklev, J.R. Jensen, H.R. Simonsen, IEEE Photon. Technol. Lett 13, 588 (2001)

    Article  ADS  Google Scholar 

  5. T. Nasilowski, et al, Appl. Phys. B 81, 325 (2005)

    Article  ADS  Google Scholar 

  6. M. Chen, S.G. Yang, F.F. Yin, H.W. Chen, S.Z. Xie, Optoelectron. Lett. 4, 19 (2008)

    Article  ADS  Google Scholar 

  7. A. Ortigosa-Blanch, J.C. Knight, W.J. Wadsworth, J. Arriaga, B.J. Mangan, T.A. Birks, P. St. J. Russell, Opt. Lett 25, 1325 (2000)

  8. T.J. Yang, L.F. Shen, Y.F. Chau, M.J. Sung, D. Chen, D.P. Tsai, Opt. Commun. 281, 4334 (2008)

    Article  ADS  Google Scholar 

  9. Y.S. Sun, Y.F. Chau, H.H. Yeh, L.F. Shen, T.J. Yang, D.P. Tsai, Appl. Opt. 46, 5276 (2007)

    Article  ADS  Google Scholar 

  10. Y.S. Sun, Y.F. Chau, H.H. Yeh, D.P. Tsai, Jpn. J. Appl. Phys 47, 3755 (2008)

    Article  ADS  Google Scholar 

  11. Y.S. Sun, Y.F. Chou Chau, W. Yang, H.H. Yeh, S.F. Wang, Y. Chu, Ci-Yao Jheng, J.M. Sung, Jpn. J. Appl. Phys 52, 062502 (2013)

    Article  ADS  Google Scholar 

  12. K.Y. Yang, Y.F. Chau, Y.W. Huang, H.Y. Yeh, D.P. Tsai, J. Appl. Phys 109, 093103 (2011)

    Article  ADS  Google Scholar 

  13. Y.F. Chou Chau, C.M. Lim, V.N. Yoong, M. N. S. Idris, J. Appl. Phys 118, 243102 (2015)

    Article  ADS  Google Scholar 

  14. Y.F. Chau, J. Modern Opt. 58, 1673 (2011)

    Article  ADS  Google Scholar 

  15. Andrew A. B. Tio, P. Shum, Y.D. Gong, Opt. Express 11, 2991 (2003)

    Article  ADS  Google Scholar 

  16. L. Zhang, C. Yang, Opt. Express 11, 1015 (2003)

    Article  ADS  Google Scholar 

  17. X. Dong, H.Y. Tam, P. Shum, Appl. Phys. Lett. 90, 151113 (2007)

    Article  ADS  Google Scholar 

  18. R.A. Bergh, H.C. Lefevre, H.J. Shaw, J. Lightwave Technol. LT-2, 91 (1984)

    Article  ADS  Google Scholar 

  19. K. Saitoh, M. Koshiba, J. Lightwave Technol. 24, 4729 (2006)

    Article  ADS  Google Scholar 

  20. H. Malitson, J. Opt. Soc. Am 55, 1205 (1965)

    Article  ADS  Google Scholar 

  21. T.A. Birks, J.C. Knight, P. St. J. Russell, Opt. Lett. 22, 961 (1997)

    Article  ADS  Google Scholar 

  22. J. Broeng, D. Mogilevstev, S.E. Barkou, A. Bjarklev, Opt. Fiber Technol. 5, 305 (1999)

    Article  ADS  Google Scholar 

  23. P. St. J. Russell, J. Lightwave Technol. 24, 4729 (2006)

  24. J. C. Knight, T. A. Birks, P. St, J. Russell, D.M. Atkin, Opt. Lett 21, 1547 (1996)

    Article  ADS  Google Scholar 

  25. J. M. Hsu, C. W. Yao, J. Z. Chen, J. Lightwave Technol. 33, 2240 (2015)

    Article  ADS  Google Scholar 

  26. M. Delgado-Pinar, J. Cascante-Vindas, et al., IEEE/ICTON, 2007, 157 (2007)

  27. V.V.R.K. Kumar, A.K. George et al., Opt. Express 10, 1520 (2002)

    Article  ADS  Google Scholar 

  28. H. E. Hamzaoui, L. Bigot, et al., Opt. Mater. Express 1, 234 (2011)

    Article  Google Scholar 

  29. Q. Coulombier, L. Brilland, et al., Proc. SPIE 7598, 75980O (2010)

    Google Scholar 

  30. N.A. Issa, M.A.V. Eijkelenborg, M. Fellew et al., Opt. Lett. 29, 1336 (2004)

    Article  ADS  Google Scholar 

  31. P. Domachuk, A. Chapman, E. Mägi, M.J. Steel, H.C. Nguyen, B.J. Eggleton, Appl. Opt. 44, 3885 (2005)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author is thankful for the financial support from the Ministry of Science and Technology, Taiwan, ROC, under Grant No. of MOST 105-2221-E-239-014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jui-Ming Hsu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hsu, JM. Systematic design of highly birefringent photonic crystal fibers. Appl. Phys. B 123, 73 (2017). https://doi.org/10.1007/s00340-017-6660-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-017-6660-8

Keywords

Navigation