Skip to main content
Log in

A Novel Ultra-high Birefringent Photonic Crystal Fiber for Nonlinear Applications

  • General and Applied Physics
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

In this paper, a novel polarization-maintaining highly birefringent photonic crystal fiber (PMHB-PCF) has been investigated by using finite element method (FEM). Initially, the numerical analysis is carried out to ascertain its PMHB characteristics by using two different novel PCF structures (hexagonal-elliptical PCF and elliptical-elliptical PCF) and their performance characteristics are measured. By inducing the asymmetries in the fiber structure, the beat length of the fiber and their modal birefringence have been optimized. In proposed designs hexagonal-elliptical (cladding layers) PCF structure provides an ultra-high birefringence of about 4.51 × 10–2 with a lower beat length of 34.37 µm. This reported fiber exposed a high nonlinear coefficient of about 61. 95 W−1 km−1 at the operating wavelength of 1.55 µm. Also, it has a normalized frequency parameter (V parameter) of about 1.373 over the optical spectrum of 1.3 to 1.6 µm; it ensures the fiber single-mode operation. Due to the high nonlinearity and birefringence, this fiber is more suitable for nonlinear applications. It confirms the phase-matching conditions for the purpose like wavelength conversion which employs four-wave mixing technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J. Boreng, D. Mogilevstev, S.E. Barkou, A. Bjarklev, Photonic crystal fibers: a new class of optical waveguides. Opt. Fiber Technol. 5(3), 305–330 (1999)

    Article  ADS  Google Scholar 

  2. J.C. Knight, Photonic crystal fibres. Nature 424, 847–851 (2003)

    Article  ADS  Google Scholar 

  3. M.J. Steel, R.M. Osgood Jr., Elliptical-hole photonic crystal fibers. Opt. Lett. 26(4), 229–231 (2001)

    Article  ADS  Google Scholar 

  4. Y. Yue, G. Kai, Z. Wang, T. Sun, L. Jin, Lu. Yunfei, C. Zhang, J. Liu, Y. Li, Y. Liu, S. Yuan, X. Dong, Highly birefringent elliptical-hole photonic crystal fiber with squeezed hexagonal lattice. Opt. Lett. 32(5), 469–471 (2007)

    Article  ADS  Google Scholar 

  5. Y.S. Lee, C.G. Lee, F. Bahloul, S. Kim, K. Oh, Simultaneously achieving a large negative dispersion and high birefringence over Er and Tm dual gain bands in a square lattice photonic crystal fiber. J. Lightwave Technol. 37(4), 1254–1263 (2019)

    Article  ADS  Google Scholar 

  6. X. Li, P. Liu, Xu. Zhenlong, Z. Zhang, Design of a pentagonal photonic crystal fiber with high birefringence and large flattened negative dispersion. Appl. Opt. 54(24), 7350–7357 (2015)

    Article  ADS  Google Scholar 

  7. S.K. Biswas, S.M. Rakibul Islam, M.D. Rubayet Islam, M.M.A Mia, S. Sayem, F. Ahmed,Design of an ultrahigh birefringence photonic crystal fiber with large nonlinearity using all circular air holes for a fiber optic transmission system. J. Photonics 5(3) (2018)

  8. E.C. Magi, P. Steinvurzel, Eggleton, Tapered photonic crystal fiber. Opt. Soc. Am. Opt. Express 12(5), 776–784 (2004)

  9. S. Revathi, S.R. Inbathini, R.A. Saifudeen, Highly nonlinear and birefringent spiral photonic crystal fiber. Adv. Optoelectron. 2014, 1–6 (2014)

    Article  Google Scholar 

  10. A. Michie, J. Canning, katja Lyytikainen, Mattias Aslund and Justin Digweed, Temperature independent highly birefringent photonic crystal fiber. Opt. Express 12(21), 5160–5165 (2004)

    Article  ADS  Google Scholar 

  11. H. Ademgil, S. Hexa, F. AbdelMalek, Highly nonlinear bending-insensitive birefringent photonic crystal fiber. Sci. Res. 2(8), 608–616 (2010)

    Google Scholar 

  12. Russel Reza Mahmud, Muhammad Abdul Goffar Khan, S. M. Abdur Razzak, Management of residual dispersion of an optical transmission system using octagonal photonic crystal fiber. Opt. Eng. 55(4) (2016)

  13. Y.-N. Zhang, Design and optimization of high-birefringence low-loss crystal fiber with two zero dispersion wavelengths for nonlinear effects. Appl. Opt. 50(25), 125–130 (2011)

    Article  ADS  Google Scholar 

  14. P. Kµmar, K. Firmin Fiaboe, J Sekhar Roy, Highly birefringent do-decagonal photonic crystal fibers with ultraflattened zero dispersion for supercontinuµm generation. J. Microwaves, Optoelectron. Electromagn. Appl. 18(1) (2019)

  15. J. Liang, M. Yun, W. Kong, X. Sun, W. Zhang, S. Xi, Highly birefringent photonic crystal fibers with flattened dispersion and low effective mode area. Optik 122(23), 2151–2154 (2011)

    Article  ADS  Google Scholar 

  16. Q. Wei, L. Shu-Guang, X. Jian-Rong, X. Xii-Jun, Zhang Lei, Nµmerical analysis of a photonic crystal fiber based on two polarized modes for biosensing applications. Chin Phys B. 22(7) (2013)

  17. N. Ayyanar, G. Thavasi Raja, M. Sharma, D. Sriram Kµmar, Photonic crystal fiber-based refractive index sensor for early detection of cancer. IEEE sensors journal 18(17), 7093–7099 (2018)

  18. K. Ahmed, B. Kµmar Paul, Md. Shadidul Islam, S. Chowdhry, S. Sen, Md. Ibadul Islam, S. Asaduzzaman, Ultra high birefringence and lower beat length for square shape pcf: analysis effect on rotation angle and eccentricity. Alex. Eng. J. 57(4), 3683–3691 (2018)

  19. S. Sidhik, J.V. Ittiarah, Mrinmay, Pal, Tarun Kµmar, Gangopadhyaym, All circular hole microstructured fiber with ultra-high birefringence and reduced confinement loss. Measurement 147(106895), 1–7 (2019)

    Google Scholar 

  20. N. Tabbasum, Md. M. Rashid, A. Yesmin, M. Emdadul, Islam, Highly nonlinear and highly birefringent hybrid photonic crystal fiber, International conference on robatics, electrical and signal processing techniques (2019)

  21. Rekha Saha, Md. Mahbub Hossain, Md. Ekhlasur Rahaman and Himadri Shekhar Mondal, Design and analysis of high birefringence and non-linearity with small confinement loss photonic crystal fiber. Front. Optoelectron. 12(2), 165–173 (2019)

  22. S. Liang, Y. Yang, S. Kang, Y. Zhang, X. Sheng, S. Lou, X. Wang, W. Zhang, T. Zhao, Influences of asymmertrical geometrical structures on the birefringence of index-guiding photonic crystal fiber. Optik 180, 973–983 (2019)

    Article  ADS  Google Scholar 

  23. P.S. Maji, P.R. Chaudhri, Near elliptic core triangular lattice and square lattice PCFs: a comparision of Birefringence, Cutoff and GVD Characteristics towards fiber device application. J. Opt. Soc. Korea. 18(3), 207-216 (2014)

  24. A. Zendehnam, M. Hosseinpour, M. Mirzaei, K. Hedayati, Optimum values of air filling fraction for photonic crystal fibers with different configurations and fixed number of air hole rings. Appl. Opt. 53(6), 1075–1082 (2014)

    Article  ADS  Google Scholar 

  25. K. Kakihara, N. Kono, K. Saitoh, M. Koshiba, Full vectorial finite element method in a cylindrical coordinate system for loss analysis of photonic wire bends. Optic Express. 14(23), 11128–11141 (2006)

  26. M. Mejbaul Haque, M. Shaifur, M. Saimul Habib, S.M.A. Razzak, Design and characterization of single mode circular photonic crystal fiber for broadband dispersion compensation. Optik. 125(11), 2608–2611 (2014)

  27. G. Agrawal, Nonlinear fiber optics, 5th Edition. Academic Press (UK), pp.648 (2012)

  28. S. Yogalakshmi1, S. Selvendran, A. Sivanantha Raja, Design and analysis of a photonic crystal fiber-based polarization filter using surface plasmon resonance. Laser Phys. 26, pp. 056201 (2016)

  29. M. Mejbaul Haque, M. Shaifur Rahman, M. Selim Habib, M. Semiul Habib, A single mode hybrid cladding circular photonic crystal fiber dispersion compensation and sensing applications, photonics and nanostructures-fundamentals and applications 14, 63–70 (2015)

  30. A. Kµmar, Dharmendra K Singh, Single mode negative dispersion hexagonal photonic crystal fiber. International conference on microelectronics, computing, communication systems 453, 1–8 (2018)

    Google Scholar 

  31. M. I. Hasan, M. Selim Habib, M. Samiul Habib, S. M. Abdur Razzak, Highly nonlinear and highly birefringent dispersion compensating photonic crystal fiber. Opt. Fiber Technol. 20(1), 32–38 (2014)

  32. J. C. Knight, T. A. Birks, P.St. J. Russell, D. M. Atkin, All-silica single mode optical fiber with photonic crystal cladding. Opt. Lett. 21(19),1547–1549 (1996)

  33. P. Zhang, J. Zhang, P. Yang, S. Dai, X. Wang, W. Zhang, Fabrication of chalcogenide glass photonic crystal fibers with mechanical drilling. Opt. Fiber Technol. 26, 176–179 (2019)

    Article  ADS  Google Scholar 

  34. D. Pysz, I. Kujava, R. Stepien, M. Klimczak, A Filipkowski, M. Franczyk, L. Kociszewski, J. Buzniak, K. Harasny, R. Buczynski, Stack and draw fabrication of soft glass microstructured fiber optics, Bulletin of the Polish Academy of Sciences. Technical Sciences 62(4), 667–682 (2014)

  35. T. Yajima, J. Yamamoto, F. Ishii, T. Hirooka, Masato Yoshida and Masataka Nakazawa, Low-loss photonic crystal fiber fabricated by a slurry casting method. Optic express 21(25), 30500–30506 (2013)

    Article  ADS  Google Scholar 

  36. R.K Gangwar, V.K Singh, Study of highly birefringence dispersion shifted photonic crystal fiber with a symmetrical cladding. Optik. 127(24), 11854 – 11859 (2016)

  37. S. Asaduzzaman, K. Ahmed, Proposal of gas sensor with highly sensitive, Birefringence and non-linearity for air pollution monitoring. Journal of sensing and Biosensing Research 10, 20–26 (2016)

    Article  Google Scholar 

  38. J–M Hsu, Systematic design of highly Birefringent photonic crystal fibers, springer. Journal of Applied Physics B 123(73), 1–9 (2017)

  39. S. Chowdhury, J. Mondal, Ultra-high birefringent and high non-linear PCF for S+C+L+U wavebands. International Conference on Electrical, Computer and Communication Engineering (ECCE). Cox's Bazar. 60–62 (2017)

  40. S. Chowdhury, J. Mondal, Designing of a non - zero dispersion shifted fiber with ultra-high birefringence and high non linearity. Int. J. Electr. Comput. Eng. 14(6), 160–166 (2020)

    Google Scholar 

  41. A. Lavanya, G. Geetha, A novel hybrid hexagonal photonic crystal fibre for optical fibre communication. Journal of Optical Fiber Technology. 59(102321), 1–7 (2020)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Selvendran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alishacelestin, X., Raja, A.S., Muthu, K.E. et al. A Novel Ultra-high Birefringent Photonic Crystal Fiber for Nonlinear Applications. Braz J Phys 51, 605–617 (2021). https://doi.org/10.1007/s13538-020-00853-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-020-00853-9

Keywords

Navigation