Skip to main content
Log in

Modulation instability, stability analysis and soliton solutions to the resonance nonlinear Schrödinger model with Kerr law nonlinearity

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In the theory of optical fibres, the nonlinear Schrödinger equation is one of the most significant physical models for understanding the dynamics of optical soliton proliferation. Optical soliton propagation in nonlinear optical fibres is a topic of considerable contemporary interest due to the wide range of applications for ultrafast signal routing systems and short light pulses in communications. Our basic objective of this investigation is to use different modern analytical techniques to develop several soliton solutions for the resonance model. As an outcome, a variety of periodic solitons and singular bell shaped solitons solutions are obtained. Furthemore, the findings of stability as well as its modulation instabilities are effectively analyzed. The adapted schemes seem very impressive and competent avenue to obtained several advanced moving pulse shapes of different coincident pattern in the recent decade.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of data and materials

Data sharing not applicable to this article as no datasets were generated or analyzed during this study.

References

  • Abdelrahman, M.A., Mohammed, W.W.: The impact of multiplicative noise on the solution of the chiral nonlinear Schrödinger equation. Phys. Scr. 95(8), 085222 (2020)

    Article  ADS  Google Scholar 

  • Ahmad, H., Alam, M.N., Rahim, M.A., Alotaibi, M.F., Omri, M.: The unified technique for the nonlinear time-fractional model with the beta-derivative. Results Phys. 29, 104785 (2021)

    Article  Google Scholar 

  • Akram, G., Sajid, N.: The investigation of exact solutions of Korteweg–de Vries equation with dual power law nonlinearity using the exp\(_{a}\) and exp \((- {\phi } ({ }))\) methods. Int. J. Comput. Math. 99(3), 629–640 (2022)

  • Ali, K.K., Yokus, A., Seadawy, A.R., Yilmazer, R.: The ion sound and Langmuir waves dynamical system via computational modified generalized exponential rational function. Chaos Solitons Fract. 161, 112381 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  • Aljahdaly, N.H., ALoufi, R.G., Seadawy, A.R.: Stability analysis and soliton solutions for the longitudinal wave equation in magneto electro-elastic circular rod. Results Phys. 26, 104329 (2021)

  • Alotaibi, M., Baizakov, B., Al-Marzoug, S., Bahlouli, H.: Splitting of coupled bright solitons in two-component Bose–Einstein condensates under parametric perturbation. Phys. Lett. A 384(11), 126243 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  • Ankiewicz, A., Bokaeeyan, M., Akhmediev, N.: Shallow-water rogue waves: an approach based on complex solutions of the Korteweg–de Vries equation. Phys. Rev. E 99(5), 050201 (2019)

    Article  ADS  Google Scholar 

  • Baleanu, D., Inc, M., Aliyu, A.I., Yusuf, A.: Dark optical solitons and conservation laws to the resonance nonlinear Shrödinger’s equation with Kerr law nonlinearity. Optik 147, 248–255 (2017)

    Article  ADS  Google Scholar 

  • Bekir, A., Zahran, E.H.: New visions of the soliton solutions to the modified nonlinear Schrodinger equation. Optik 232, 166539 (2021)

    Article  ADS  Google Scholar 

  • Bilal, M., Younas, U., Ren, J.: Dynamics of exact soliton solutions to the coupled nonlinear system using reliable analytical mathematical approaches. Commun. Theor. Phys. 73(8), 085005 (2021)

    Article  MathSciNet  ADS  Google Scholar 

  • Cinar, M., Secer, A., Bayram, M.: Analytical solutions of (\(2 + 1\))-dimensional Calogero–Bogoyavlenskii–Schiff equation in fluid mechanics/plasma physics using the new Kudryashov method. Phys. Scr. 97(9), 094002 (2022)

    Article  ADS  Google Scholar 

  • El-Shiekh, R.M., Gaballah, M.: Solitary wave solutions for the variable-coefficient coupled nonlinear Schrödinger equations and Davey–Stewartson system using modified sine-Rordon equation method. J. Ocean Eng. Sci. 5(2), 180–185 (2020)

    Article  Google Scholar 

  • El-Tantawy, S., Salas, A.H., Alharthi, M.: On the analytical and numerical solutions of the linear damped NLSE for modeling dissipative freak waves and breathers in nonlinear and dispersive mediums: an application to a pair-ion plasma. Front. Phys. 9, 580224 (2021)

    Article  Google Scholar 

  • Gaballah, M., El-Shiekh, R.M., Akinyemi, L., Rezazadeh, H.: Novel periodic and optical soliton solutions for Davey–Stewartson system by generalized jacobi elliptic expansion method. Int. J. Nonlinear Sci. Numer. Simul (2022). https://doi.org/10.1515/ijnsns-2021-0349

  • Griffiths, G., Schiesser, W.E.: Traveling Wave Analysis of Partial Differential Equations: Numerical and Analytical Methods with MATLAB and Maple. Academic Press, London (2010)

    Google Scholar 

  • Hosseini, K., Matinfar, M., Mirzazadeh, M.: A (\(3+ 1\))-dimensional resonant nonlinear Schrödinger equation and its Jacobi elliptic and exponential function solutions. Optik 207, 164458 (2020)

    Article  ADS  Google Scholar 

  • Iwata, Y., Yokozeki, T.: Wave propagation analysis of one-dimensional CFRP lattice structure. Compos. Struct. 261, 113306 (2021)

    Article  Google Scholar 

  • Kadir, S.M.E.A., Taha, W.M., Hameed, R.A., Jameel, A.: Efficient approximate analytical methods to solve Kaup–Kupershmidt (KK) equation. In: International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT). IEEE 2022, 206–211 (2022)

  • Karaman, B.: The use of improved-f expansion method for the time-fractional Benjamin–Ono equation. Rev. de la Real Acad. de Ciencias Exactas Físicas y Naturales. Serie A. Matemáticas 115(3), 128 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  • Khater, M.M., Muhammad, S., Al-Ghamdi, A., Higazy, M.: Abundant wave structures of the fractional Benjamin-ono equation through two computational techniques. J. Ocean Eng. Sci (2022). https://doi.org/10.1016/j.joes.2022.01.009

  • Li, Z., Manafian, J., Ibrahimov, N., Hajar, A., Nisar, K.S., Jamshed, W.: Variety interaction between k-lump and k-kink solutions for the generalized burgers equation with variable coefficients by bilinear analysis. Results Phys. 28, 104490 (2021)

    Article  Google Scholar 

  • Liu, H., Bai, C.-L., Xin, X., Li, X.: Equivalent transformations and exact solutions to the generalized cylindrical kdv type of equation. Nucl. Phys. B 952, 114924 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  • March, S.T., Smith, G.F.: Design and natural science research on information technology. Decis. Support Syst. 15(4), 251–266 (1995)

    Article  Google Scholar 

  • Mohanty, S.K., Kumar, S., Dev, A.N., Deka, M.K., Churikov, D.V., Kravchenko, O.V.: An efficient technique of G’ G-expansion method for modified kdv and burgers equations with variable coefficients. Results Phys. 37, 105504 (2022)

    Article  Google Scholar 

  • Ramtin Fard, S., Salehi, M.R., Abiri, E.: Ultra-fast all-optical ADC using nonlinear ring resonators in photonic crystal microstructure. Opt. Quant. Electron. 53, 1–14 (2021)

    Article  Google Scholar 

  • Rizvi, S., Seadawy, A.R., Abbas, S., Latif, S., Althobaiti, S.: Exact and numerical solutions to the system of the chlorite iodide malonic acid chemical reactions. Comput. Appl. Math. 41(1), 13 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  • Saifullah, S., Ahmad, S., Alyami, M.A., Inc, M.: Analysis of interaction of lump solutions with kink-soliton solutions of the generalized perturbed kdv equation using Hirota-bilinear approach. Phys. Lett. A 454, 128503 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  • Sain, S., Ghose-Choudhury, A., Garai, S.: Solitary wave solutions for the kdv-type equations in plasma: a new approach with the Kudryashov function. Eur. Phys. J. Plus 136(2), 1–13 (2021)

    Article  Google Scholar 

  • Sedeeg, A.K.H., Nuruddeen, R., Gomez-Aguilar, J.: Generalized optical soliton solutions to the (\(3+ 1\))-dimensional resonant nonlinear Schrödinger equation with Kerr and parabolic law nonlinearities. Opt. Quant. Electron. 51, 1–15 (2019)

    Article  Google Scholar 

  • Serkin, V.N., Hasegawa, A.: Exactly integrable nonlinear schrodinger equation models with varying dispersion, nonlinearity and gain: application for soliton dispersion. IEEE J. Sel. Top. Quantum Electron. 8(3), 418–431 (2002)

    Article  ADS  Google Scholar 

  • Shakeel, M., Mohyud-Din, S.T., Iqbal, M.A.: Modified extended exp-function method for a system of nonlinear partial differential equations defined by seismic sea waves. Pramana 91, 1–8 (2018)

    Article  Google Scholar 

  • Tozar, A., Tasbozan, O., Kurt, A.: Optical soliton solutions for the (\(1+ 1\))-dimensional resonant nonlinear Schrödinger equation arising in optical fibers. Opt. Quant. Electron. 53(6), 316 (2021)

    Article  Google Scholar 

  • Wang, S.: Novel multi-soliton solutions in (2+ 1)-dimensional pt-symmetric couplers with varying coefficients. Optik 252, 168495 (2022)

    Article  ADS  Google Scholar 

  • Younas, U., Sulaiman, T.A., Ren, J.: Dynamics of optical pulses in dual-core optical fibers modelled by decoupled nonlinear Schrodinger equation via GERF and NEDA techniques. Opt. Quant. Electron. 54(11), 738 (2022)

    Article  Google Scholar 

  • Zafar, A., Shakeel, M., Ali, A., Akinyemi, L., Rezazadeh, H.: Optical solitons of nonlinear complex Ginzburg–Landau equation via two modified expansion schemes. Opt. Quant. Electron. 54(1), 1–15 (2022)

    Article  Google Scholar 

  • Zhang, D., Zhang, Y., Wang, Z., Zheng, Y., Zheng, X., Gao, L., Wang, C., Yang, C., Tang, H., Li, Y.: Biodegradable film enabling visible light excitation of Hexanuclear Europium (III) complex for various applications. J. Lumin. 229, 117706 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to extend their sincere appreciation to Researchers Supporting Project Number (RSPD2023R802) King Saud University, Riyadh, Saudi Arabia.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization; Methodology: [Kalim U. Tariq; Formal analysis and investigation: [Mustafa Inc]; Writing - original draft preparation: [S.M. Raza Kazmi]; Writing - review and editing: [Reem Alhefthi]

Corresponding author

Correspondence to Mustafa Inc.

Ethics declarations

Ethics approval

Not applicable.

Competing interests

The authors declare no confict of interest.

Consent for publication

All the authors have agreed and given their consent for the publication of this research paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tariq, K.U., Inc, M., Kazmi, S.M.R. et al. Modulation instability, stability analysis and soliton solutions to the resonance nonlinear Schrödinger model with Kerr law nonlinearity. Opt Quant Electron 55, 838 (2023). https://doi.org/10.1007/s11082-023-05046-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-05046-7

Keywords

Navigation