Skip to main content
Log in

Artificial intelligence (AI) for quantum and quantum for AI

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

The technological fields of AI and quantum technology have evolved in parallel, and have demonstrated considerable potential to complement each other. Amalgamation of them refers to the use of AI techniques to develop algorithms for quantum computing (QC) and quantum physics, as well as the use of QC to enhance AI applications. QC has the potential to revolutionize various fields. Controlling quantum systems is notoriously difficult, which is one of the major obstacles standing in the way of widespread use of QC. AI has opened up new avenues for automated control of quantum systems. In particular, the application of AI can provide invaluable insight into the complex and multifaceted domain of quantum physics to accelerate the discovery of quantum physics laws, and can potentially alleviate challenges that have been historically associated with QC and quantum communication. On the other hand, QC can also be used to enhance AI applications. For instance, QC can be used to haste the training of neural networks, which are used in machine learning. Concurrently, a series of advancements in quantum technology can serve to drive innovation in the realm of machine learning by enabling the development of novel algorithms, frameworks, and hardware. This article presents a comprehensive overview on the reciprocal relationship between AI and quantum technology, emphasizing the utility of AI in the field of quantum technology, and the potential of quantum technology to catalyze the evolution of AI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Availability of data and materials

The datasets used and/or analyzed during the current study areavailable from the corresponding author on reasonable request.

References

  • Ai, X. Zhang, Z. et al.: Decompositional quantum graph neural network. arXiv Prepr. arXiv2201.05158 (2022)

  • An, Z., et al.: Quantum optimal control of multilevel dissipative quantum systems with reinforcement learning. Phys. Rev. A 103(1), 12404 (2021)

    ADS  Google Scholar 

  • Borah, S., et al.: Measurement-based feedback quantum control with deep reinforcement learning for a double-well nonlinear potential. Phys. Rev. Lett. 127(19), 190403 (2021)

    ADS  Google Scholar 

  • Carleo, G., Troyer, M.: Solving the quantum many-body problem with artificial neural networks. Science 80 355(6325), 602–606 (2017)

    MATH  MathSciNet  Google Scholar 

  • Carleo, G., et al.: Machine learning and the physical sciences. Rev. Mod. Phys. 91(4), 45002 (2019)

    Google Scholar 

  • Ceschini, A., Rosato, A., Panella, M.: Hybrid quantum-classical recurrent neural networks for time series prediction. In: 2022 Int. Joint Conf. on Neural Networks (IJCNN), pp. 1–8 (2022)

  • Dawid A. et al.: Modern applications of ML in quantum sciences. arXiv Prepr. arXiv2204.04198 (2022)

  • De Luca, G.: A survey of nisq era hybrid quantum-classical machine learning research. J. Artif. Intell. Technol. 2(1), 9–15 (2022)

    Google Scholar 

  • Elkenawy, A., et al.: Full-state neural network observer-based hybrid quantum diagonal recurrent neural network adaptive tracking control. Neural Comput. Appl. 33, 9221–9240 (2021)

    Google Scholar 

  • Gan, B.Y., Leykam, D., Angelakis, D.G.: Fock state-enhanced expressivity of quantum machine learning models. EPJ Quantum Technol. 9(1), 16 (2022)

    Google Scholar 

  • Haozhen, S., et al.: Quantum generative adversarial network for generating discrete distribution. Inf. Sci. 538, 193–208 (2023)

    MATH  MathSciNet  Google Scholar 

  • He, K., et al.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conf. on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

  • Ho, C.-T., Wang, D.-W.: Robust identification of topological phase transition by self-supervised ML approach. New J. Phys. 23(8), 83021 (2021)

    Google Scholar 

  • Houssein, E.H., et al.: Hybrid quantum-classical convolutional neural network model for COVID-19 prediction using chest X-ray images. J. Comput. Des. Eng. 9(2), 343–363 (2022)

    Google Scholar 

  • Hsu, Y.-T., et al.: Machine learning many-body localization: Search for the elusive nonergodic metal. Phys. Rev. Lett. 121(24), 245701 (2018)

    ADS  Google Scholar 

  • Hur, T., Kim, L., Park, D.K.: Quantum convolutional neural network for classical data classification. Quantum Mach. Intell. 4(1), 3 (2022)

    Google Scholar 

  • Kaur, M., Kadam, S.S.: Discovery of resources using MADM approaches for parallel and distributed computing. Eng. Sci. Technol. Int. J. 20(3), 1013–1024 (2017)

    Google Scholar 

  • Kaur, M., Kadam, S., Hannoon, N.: Multi-level parallel scheduling of dependent-tasks using graph-partitioning and hybrid approaches over edge-cloud. Soft Comput 26, 5347–5362 (2022b)

    Google Scholar 

  • Kaur, M., Jadhav, A., Akter, F.: Resource selection from edge-cloud for IIoT and blockchain-based applications in industry 4.0/5.0. Sec. Commun. Net. (2022a) https://doi.org/10.1155/2022/9314052.

  • Kim, J., et al.: Quantum readout error mitigation via deep learning. New J. Phys. 24(7), 73009 (2022a)

    Google Scholar 

  • Kim, J., Huh, J., Park, D. K.: Classical-to-quantum convolutional neural network transfer learning. arXiv Prepr. arXiv2208.14708 (2022b)

  • Kottmann, K., et al.: Unsupervised phase discovery with deep anomaly detection. Phys. Rev. Lett. 125(17), 170603 (2020)

    ADS  MathSciNet  Google Scholar 

  • Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. Commun. ACM 60(6), 84–90 (2017)

    Google Scholar 

  • Le L, et al: Entanglement routing for quantum networks: a deep reinforcement learning approach. In: ICC 2022-IEEE Int. Conf. on Com., pp. 395–400 (2022)

  • Liang, Y., et al.: A hybrid quantum–classical neural network with deep residual learning. Neural Netw. 143, 133–147 (2021)

    Google Scholar 

  • Lidiak, A., Gong, Z.: Unsupervised machine learning of quantum phase transitions using diffusion maps. Phys. Rev. Lett. 125(22), 225701 (2020)

    ADS  Google Scholar 

  • Liu, J.-Y., et al.: Practical phase-modulation stabilization in quantum key distribution via machine learning. Phys. Rev. Appl. 12(1), 14059 (2019)

    Google Scholar 

  • Liu, Z.-P., et al.: Automated ML for secure key rate in discrete-modulated continuous-variable quantum key distribution. Opt. Exp. 30(9), 15024–15036 (2022)

    Google Scholar 

  • Mari, A., et al.: Transfer learning in hybrid classical-quantum neural networks. Quantum 4, 340 (2020)

    Google Scholar 

  • Melnikov, A. et al.: Quantum machine learning: from physics to software engineering. arXiv Prepr. arXiv2301.01851 (2023)

  • Melvin, T.: High-dimensional signal processing using classical-quantum machine learning pipelines with the TensorFlow stack, Cirq-NISQ, and Vertica. In: IEEE Int. Conf. QCE, pp. 793–795 (2022)

  • Meng, X., He, M., Yuan, Z.: Pure state tomography with adaptive Pauli measurements. JUSTC 52(8), 1 (2022)

    Google Scholar 

  • Miles, C., et al.: Machine learning discovery of new phases in programmable quantum simulator snapshots. Phys. Rev. Res. 5(1), 13026 (2023)

    Google Scholar 

  • Nomura, Y.: Helping restricted Boltzmann machines with quantum-state representation by restoring symmetry. J. Phys. Condens. Matter 33(17), 174003 (2021)

    ADS  Google Scholar 

  • Nomura, Y., Yoshioka, N., Nori, F.: Purifying deep Boltzmann machines for thermal quantum states. Phys. Rev. Lett. 127(6), 60601 (2021)

    ADS  Google Scholar 

  • Okey, O.D., et al.: Quantum key distribution protocol selector based on machine learning for next-generation networks. Sustainability 14(23), 15901 (2022)

    Google Scholar 

  • Overwater, R.W.J., Babaie, M., Sebastiano, F.: Neural-network decoders for quantum error correction using surface codes: A space exploration of the hardware cost-performance tradeoffs. IEEE Trans. Quantum Eng. 3, 1–19 (2022)

    Google Scholar 

  • Perelshtein, M. et al.: Practical application-specific advantage through hybrid quantum computing. arXiv Prepr. arXiv2205.04858 (2022)

  • Rahaman, S.S., Haldar, S., Kumar, M.: Machine learning approach to study quantum phase transitions of a frustrated one dimensional spin-1/2 system. J. Phys. Condens. Matter (2023)

  • Samuel, Y.C., C. et al.: Quantum Long Short-Term Memory. In: Proceedings of the IEEE Conf. on Acoustics, Speech, and Signal Processing, pp. 8622–8626 (2022)

  • Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Phys. Rev. A 103(3), 32430 (2021)

    ADS  MathSciNet  Google Scholar 

  • Sebastianelli, A., et al.: On circuit-based hybrid quantum neural networks for remote sensing imagery classification. IEEE J Sel. Top. Appl. Earth Obs. Remote Sens. 15, 565–580 (2021)

    ADS  Google Scholar 

  • Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Adv. Quantum Technol. 2(12), 1900070 (2019)

    Google Scholar 

  • Sivak, V.V., et al.: Model-free quantum control with reinforcement learning. Phys. Rev. X 12(1), 11059 (2022)

    Google Scholar 

  • S. Stein et al., “Quantum bayesian error mitigation employing poisson modelling over the hamming spectrum for quantum error mitigation,” arXiv Prepr. arXiv2207.07237, 2022.

  • Szegedy C. et al.: Going deeper with convolutions. In: Proceedings of the IEEE Conf. on Computer Vision and Pattern Recognition, pp. 1–9 (2015)

  • Teng, Y., Sachdev, S., Scheurer, M.: Unsupervised learning of quantum phases with topological order. APS Meet. Abstr. 2022, T47-002 (2022)

    ADS  Google Scholar 

  • Umer, M.J., et al.: An integrated framework for COVID-19 classification based on classical and quantum TL from a chest radiograph. Concurr. Comput. Pract. Exp. 34(20), e6434 (2022)

    Google Scholar 

  • Vaswani A. et al.: Attention is all you need. Adv. Neural Inf. Process. Syst., vol. 30 (2017)

  • Vivas, D. R. et al.: Neural-network quantum states: a systematic review. arXiv Prepr. arXiv2204.12966 (2022)

  • Wallnöfer, J., et al.: Machine learning for long-distance quantum communication. PRX Quantum 1(1), 10301 (2020)

    Google Scholar 

  • Wang, W., Lo, H.-K.: Machine learning for optimal parameter prediction in quantum key distribution. Phys. Rev. A 100(6), 62334 (2019)

    ADS  Google Scholar 

  • Wang, Z.T., Ashida, Y., Ueda, M.: Deep reinforcement learning control of quantum cartpoles. Phys. Rev. Lett. 125(10), 100401 (2020)

    ADS  Google Scholar 

  • Wang, H., et al.: Multidimensional Bose quantum error correction based on neural network decoder. NPJ Quantum Inf. 8(1), 134 (2022)

    ADS  Google Scholar 

  • Wang, H., et al.: Target-generating quantum error correction coding scheme based on generative confrontation network. Quantum Inf. Process. 21(8), 280 (2022)

    ADS  MATH  MathSciNet  Google Scholar 

  • Xu M et al.: Stochastic resource allocation in quantum key distribution for secure federated learning. In: GLOBECOM 2022–2022 IEEE Global Com. Conf., pp. 4377–4382 (2022)

  • Yoshioka, N., Hamazaki, R.: Constructing neural stationary states for open quantum many-body systems. Phys. Rev. B 99(21), 214306 (2019)

    ADS  Google Scholar 

  • Yu, Z. et al.: Power and limitations of single-qubit native quantum neural networks. arXiv Prepr. arXiv2205.07848 (2022)

  • Zhao, E., et al.: Observing a topological phase transition with deep neural networks from experimental images of ultracold atoms. Opt. Exp. 30(21), 37786–37794 (2022)

    Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

YZ wrote the main manuscript text, KY prepared Figs. 18. All authors reviewed the manuscript.

Corresponding author

Correspondence to Yingzhao Zhu.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

There are no conflicts of interest related to this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Y., Yu, K. Artificial intelligence (AI) for quantum and quantum for AI. Opt Quant Electron 55, 697 (2023). https://doi.org/10.1007/s11082-023-04914-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-04914-6

Keywords

Navigation