Skip to main content

Quantum Computing Meets Artificial Intelligence: Innovations and Challenges

  • Chapter
  • First Online:
Handbook on Artificial Intelligence-Empowered Applied Software Engineering

Abstract

With Quantum Computers being more accessible than ever, Artificial Intelligence (AI) researchers are keen to experiment with this computation power with the expectation to take the field to a new level. Exploiting the High dimensional Quantum Hilbert space to efficiently map the data features is the secret to achieve speedup. Furthermore, quantum entanglement is an exclusive feature of the Quantum platform, with a very high computation cost to be simulated classically, which has been experimentally proven to improve classification task accuracy and speed. Quantum Artificial Intelligence Software Engineering has its own challenges. Since the entire solution stack is different than its classical counterpart and the underlying hardware is vulnerable to noise, there is no methodology for producing and sustaining Quantum software as an emerging technology. Besides, an additional error mitigation process should be considered in the software life cycle to correct the defective results. Despite all the limitations of the Noisy Intermediate Scale Quantum (NISQ) hardware, many research projects are currently depending on it to solve problems like slowing down climate change, creating a sustainable business environment, and accelerating drug discovery. In this chapter, quantum-assisted artificial intelligence applications are discussed, highlighting their motivations as well as their challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Each Quantum Gate can be described by a matrix U, and the only constraint on this matrix is to be unitary : \({U}\dagger {U} = I\), where \({U}\dagger \) is the adjoint of matrix U and I is the identity matrix.

  2. 2.

    Vector notation in Quantum Mechanics that represent the state 0 mathematically.

  3. 3.

    A system’s Hamiltonian is an operator that corresponds to the overall energy of that system, and comprises both kinetic and potential energy.

  4. 4.

    A Hilbert space is a space with a finite or infinite number of dimensions that extends vector algebra and calculus methods from the two-dimensional Euclidean plan and three-dimensional space.

  5. 5.

    Hedging is a risk management approach that involves taking an opposite role in a similar asset to offset investment risks [67].

References

  1. I.L. Markov, Limits on fundamental limits to computation. Nature 512(7513), 147–154 (2014)

    Article  Google Scholar 

  2. S.B. Desai, S.R. Madhvapathy, A.B. Sachid, J.P. Llinas, Q. Wang, G.H. Ahn, G. Pitner, M.J. Kim, J. Bokor, C. Hu et al., Mos2 transistors with 1-nanometer gate lengths. Science 354(6308), 99–102 (2016)

    Article  Google Scholar 

  3. Neuromorphic computing—Next generation of AI (2021). https://www.intel.com/content/www/us/en/research/neuromorphic-computing.html

  4. Quantum computing (2021). https://www.ibm.com/quantum-computing/

  5. Quantum world association (2021). http://quantumwa.org/

  6. K. Moskvitch, Quantum computing and AI to enable our sustainable future (2021). https://ibm-research.medium.com/quantum-computing-and-ai-to-enable-our-sustainable-future-58aa494cd4bc

  7. R.P. Feynman, Simulating physics with computers. Int. J. Theor. Phys 21(6/7) (1999)

    Google Scholar 

  8. D. Deutsch, Quantum theory, the Church-Turing principle and the universal quantum computer. Proc. Roy. Soc. Lond. Ser.-A 400(1818), 97–117 (1985)

    Article  MathSciNet  Google Scholar 

  9. P.W. Shor, Algorithms for quantum computation: discrete logarithms and factoring, in Proceedings 35th Annual Symposium on Foundations of Computer Science (IEEE, 1994), pp. 124–134

    Google Scholar 

  10. L.K. Grover, A fast quantum mechanical algorithm for database search, in Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing (1996), pp. 212–219

    Google Scholar 

  11. M.M. Wilde, Quantum Information Theory (Cambridge University Press, 2013)

    Google Scholar 

  12. G.L. Squires, Quantum mechanics. https://www.britannica.com/science/quantum-mechanics-physics/

  13. M.A. Nielsen, I. Chuang, Quantum computation and quantum information (2002)

    Google Scholar 

  14. O. Carnal, J. Mlynek, Young’s double-slit experiment with atoms: a simple atom interferometer. Phys. Rev. Lett. 66(21), 2689 (1991)

    Article  Google Scholar 

  15. B. Friedrich, D. Herschbach, Stern and Gerlach: how a bad cigar helped reorient atomic physics. Phys. Today 56(12), 53–59 (2003)

    Article  Google Scholar 

  16. H. Yoshida, Moore’s Law is replaced by Neven’s Law for quantum computing (2019). https://community.hitachivantara.com/s/article/moores-law-is-replaced-by-nevens-law-for-quantum-computing

  17. Idquantique: True random number generation exploiting quantum physics (2021). https://www.idquantique.com/random-number-generation/overview/

  18. Quantum interference. https://en.wikipedia.org/wiki/Double-slit_experiment/

  19. A. Stevens, How quantum entanglement works (2018). https://www.davidjarvis.ca/how-quantum-entanglement-works/

  20. Mid-circuit measurement tutorial (2021). https://quantum-computing.ibm.com/admin/docs/manage/systems/midcircuit-measurement/

  21. P. Wittek, Quantum Machine Learning: What Quantum Computing Means to Data Mining (Academic Press, 2014)

    Google Scholar 

  22. S.C. Kak, Quantum neural computing, in Advances in Imaging and Electron Physics, vol. 94 (Elsevier, 1995), pp. 259–313

    Google Scholar 

  23. I. Ekeland, On the variational principle. J. Math. Anal. Appl. 47(2), 324–353 (1974)

    Article  MathSciNet  Google Scholar 

  24. A. Peruzzo, J. McClean, P. Shadbolt, M.H. Yung, X.Q. Zhou, P.J. Love, A. Aspuru-Guzik, J.L. O’brien, A variational eigenvalue solver on a photonic quantum processor. Nat. Commun. 5(1), 1–7 (2014)

    Google Scholar 

  25. D. Wecker, M.B. Hastings, M. Troyer, Progress towards practical quantum variational algorithms. Phys. Rev. A 92(4), 042303 (2015)

    Google Scholar 

  26. M.A. Metawei, H. Said, M. Taher, H. Eldeib, S.M. Nassar, Survey on hybrid classical-quantum machine learning models, in 2020 International Conference on Communications, Computing, Cybersecurity, and Informatics (CCCI) (IEEE, 2020), pp. 1–6

    Google Scholar 

  27. J. Romero, A. Aspuru-Guzik, Variational quantum generators: generative adversarial quantum machine learning for continuous distributions (2019). arXiv:1901.00848

  28. E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm (2014). arXiv:1411.4028

  29. E. Zahedinejad, A. Zaribafiyan, Combinatorial optimization on gate model quantum computers: a survey (2017). arXiv:1708.05294

  30. D. Ventura, T. Martinez, Quantum associative memory. Inf. Sci. 124(1–4), 273–296 (2000)

    Article  MathSciNet  Google Scholar 

  31. M. Schuld, M. Fingerhuth, F. Petruccione, Implementing a distance-based classifier with a quantum interference circuit. EPL (Europhys. Lett.) 119(6), 60002 (2017)

    Google Scholar 

  32. Y. Cao, G.G. Guerreschi, A. Aspuru-Guzik, Quantum neuron: an elementary building block for machine learning on quantum computers (2017). arXiv:1711.11240

  33. S. Lloyd, M. Schuld, A. Ijaz, J. Izaac, N. Killoran, Quantum embeddings for machine learning (2020). arXiv:2001.03622

  34. E. Farhi, H. Neven, Classification with quantum neural networks on near term processors (2018). arXiv:1802.06002

  35. M. Schuld, Quantum machine learning models are kernel methods (2021). arXiv:2101.11020

  36. A. Abbas, D. Sutter, C. Zoufal, A. Lucchi, A. Figalli, S. Woerner, The power of quantum neural networks (2020). arXiv:2011.00027

  37. Qiskit: Variational quantum classifier (2021). https://qiskit.org/documentation/tutorials/machine_learning/03_vqc.html

  38. F. Arute, K. Arya, R. Babbush, D. Bacon, J.C. Bardin, R. Barends, R. Biswas, S. Boixo, F.G. Brandao, D.A. Buell et al., Quantum supremacy using a programmable superconducting processor. Nature 574(7779), 505–510 (2019)

    Article  Google Scholar 

  39. J. Preskill, Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018)

    Article  Google Scholar 

  40. M. Martonosi, M. Roetteler, Next steps in quantum computing: computer science’s role (2019). arXiv:1903.10541

  41. S.S. Tannu, M.K. Qureshi, Not all qubits are created equal: a case for variability-aware policies for nisq-era quantum computers, in Proceedings of the Twenty-Fourth International Conference on Architectural Support for Programming Languages and Operating Systems (2019), pp. 987–999

    Google Scholar 

  42. M.A. Nielsen, A simple formula for the average gate fidelity of a quantum dynamical operation. Phys. Lett. A 303(4), 249–252 (2002)

    Article  MathSciNet  Google Scholar 

  43. P.D. Team, Quantum volume (2021). https://pennylane.ai/qml/demos/quantum_volume.html

  44. E. Knill, Quantum computing with realistically noisy devices. Nature 434(7029), 39–44 (2005)

    Article  Google Scholar 

  45. Leymann, F., Barzen, J., Falkenthal, M., Vietz, D., Weder, B., Wild, K.: Quantum in the cloud: application potentials and research opportunities. arXiv preprint arXiv:2003.06256 (2020)

  46. D.C. McKay, T.E.A. Alexander, Qiskit backend specifications for openqasm and openpulse experiments (2018). arXiv:1809.03452

  47. V. Bergholm, J. Izaac, M. Schuld, C. Gogolin, C. Blank, K. McKiernan, N. Killoran, Pennylane: automatic differentiation of hybrid quantum-classical computations (2018). arXiv:1811.04968

  48. What is quantum machine learning? https://pennylane.ai/qml/whatisqml.html

  49. J. Gambetta, IBM’s roadmap for scaling quantum technology (2021). https://www.ibm.com/blogs/research/2020/09/ibm-quantum-roadmap/

  50. B. Weder, B., J. Barzen, F. Leymann, M. Salm, D. Vietz, The quantum software lifecycle, in Proceedings of the 1st ACM SIGSOFT International Workshop on Architectures and Paradigms for Engineering Quantum Software (2020), pp. 2–9

    Google Scholar 

  51. F. Leymann, Towards a pattern language for quantum algorithms, in International Workshop on Quantum Technology and Optimization Problems (Springer, 2019), pp. 218–230

    Google Scholar 

  52. J.R. McClean, J. Romero, R. Babbush, A. Aspuru-Guzik, The theory of variational hybrid quantum-classical algorithms. New J. Phys. 18(2), 023023 (2016)

    Google Scholar 

  53. K. Sharma, S. Khatri, M. Cerezo, P.J. Coles, Noise resilience of variational quantum compiling. New J. Phys. 22(4), 043006 (2020)

    Google Scholar 

  54. V. Havlíček, A.D. Córcoles, K. Temme, A.W. Harrow, A. Kandala, J.M. Chow, J.M. Gambetta, Supervised learning with quantum-enhanced feature spaces. Nature 567(7747), 209–212 (2019)

    Article  Google Scholar 

  55. P. Date, C. Schuman, R. Patton, T. Potok, A classical-quantum hybrid approach for unsupervised probabilistic machine learning (2020), pp. 98–117. https://doi.org/10.1007/978-3-030-12385-7_9

  56. M. Broughton, G. Verdon, T. McCourt, A.J. Martinez, J.H. Yoo, S.V. Isakov, P. Massey, M.Y. Niu, R. Halavati, E. Peters, et al.: Tensorflow quantum: a software framework for quantum machine learning (2020). arXiv:2003.02989

  57. Summary of the IEEE workshop on benchmarking quantum computational devices and systems (2020). https://quantum.ieee.org/education/quantum-supremacy-and-quantum-computer-performance

  58. B. Nachman, M. Urbanek, W.A. de Jong, C.W. Bauer, Unfolding quantum computer readout noise. NPJ Quant. Inf. 6(1), 1–7 (2020)

    Google Scholar 

  59. Transpiler passes and pass manager (2021). https://qiskit.org/documentation/tutorials/circuits_advanced/04_transpiler_passes_and_passmanager.htmll

  60. Terraform tutorials (2020). https://learn.hashicorp.com/terraform?utm_source=terraform_io

  61. Kubernetes documentation (2020). https://kubernetes.io/docs/home/

  62. Documentation (2020). https://slurm.schedmd.com/documentation.html

  63. R. Lindsey, Climate change: atmospheric carbon dioxide (2020). https://www.climate.gov/news-features/understanding-climate/climate-change-atmospheric-carbon-dioxide

  64. M. Rutkowski, The Black-Scholes model. (2016). https://www.maths.usyd.edu.au/u/UG/SM/MATH3075/r/Slides_8_Black_Scholes_Model.pdf

  65. F. Flother, Coming soon to your business—quantum computing. (2018). https://www.ibm.com/thought-leadership/institute-business-value/report/quantumstrategy

  66. E. Yndurian, S.. Woener, D.J. Egger, Exploring quantum computing use cases for financial services (2019). https://www.ibm.com/thought-leadership/institute-business-value/report/exploring-quantum-financial

  67. Investopedia: a beginner’s guide to hedging (2020). https://www.investopedia.com/trading/hedging-beginners-guide/

Download references

Acknowledgements

We would like to express our gratitude to Dr. Sherif Saif and Dr. Wael S. Afifi for their insightful suggestions that helped to improve this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maha A. Metawei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Metawei, M.A., Eldeeb, H., Nassar, S.M., Taher, M. (2022). Quantum Computing Meets Artificial Intelligence: Innovations and Challenges. In: Virvou, M., Tsihrintzis, G.A., Bourbakis, N.G., Jain, L.C. (eds) Handbook on Artificial Intelligence-Empowered Applied Software Engineering. Artificial Intelligence-Enhanced Software and Systems Engineering, vol 2. Springer, Cham. https://doi.org/10.1007/978-3-031-08202-3_12

Download citation

Publish with us

Policies and ethics